Miscellaneous Applications of Quons

This paper deals with quon algebras or deformed oscillator algebras, for which the deformation parameter is a root of unity. We motivate why such algebras are interesting for fractional supersymmetric quantum mechanics, angular momentum theory and quantum information. More precisely, quon algebras a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Kibler, M.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147191
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Miscellaneous Applications of Quons / M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 71 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147191
record_format dspace
spelling irk-123456789-1471912019-02-14T01:27:21Z Miscellaneous Applications of Quons Kibler, M.R. This paper deals with quon algebras or deformed oscillator algebras, for which the deformation parameter is a root of unity. We motivate why such algebras are interesting for fractional supersymmetric quantum mechanics, angular momentum theory and quantum information. More precisely, quon algebras are used for (i) a realization of a generalized Weyl-Heisenberg algebra from which it is possible to associate a fractional supersymmetric dynamical system, (ii) a polar decomposition of SU2 and (iii) a construction of mutually unbiased bases in Hilbert spaces of prime dimension. We also briefly discuss (symmetric informationally complete) positive operator valued measures in the spirit of (iii). 2007 Article Miscellaneous Applications of Quons / M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 71 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81R50; 81R05; 81R10; 81R15 http://dspace.nbuv.gov.ua/handle/123456789/147191 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper deals with quon algebras or deformed oscillator algebras, for which the deformation parameter is a root of unity. We motivate why such algebras are interesting for fractional supersymmetric quantum mechanics, angular momentum theory and quantum information. More precisely, quon algebras are used for (i) a realization of a generalized Weyl-Heisenberg algebra from which it is possible to associate a fractional supersymmetric dynamical system, (ii) a polar decomposition of SU2 and (iii) a construction of mutually unbiased bases in Hilbert spaces of prime dimension. We also briefly discuss (symmetric informationally complete) positive operator valued measures in the spirit of (iii).
format Article
author Kibler, M.R.
spellingShingle Kibler, M.R.
Miscellaneous Applications of Quons
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kibler, M.R.
author_sort Kibler, M.R.
title Miscellaneous Applications of Quons
title_short Miscellaneous Applications of Quons
title_full Miscellaneous Applications of Quons
title_fullStr Miscellaneous Applications of Quons
title_full_unstemmed Miscellaneous Applications of Quons
title_sort miscellaneous applications of quons
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147191
citation_txt Miscellaneous Applications of Quons / M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 71 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kiblermr miscellaneousapplicationsofquons
first_indexed 2023-05-20T17:26:56Z
last_indexed 2023-05-20T17:26:56Z
_version_ 1796153317883117568