Conformal Metrics with Constant Q-Curvature
We consider the problem of varying conformally the metric of a four dimensional manifold in order to obtain constant Q-curvature. The problem is variational, and solutions are in general found as critical points of saddle type. We show how the problem leads naturally to consider the set of formal ba...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147193 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Conformal Metrics with Constant Q-Curvature / A. Malchiodi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 46 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We consider the problem of varying conformally the metric of a four dimensional manifold in order to obtain constant Q-curvature. The problem is variational, and solutions are in general found as critical points of saddle type. We show how the problem leads naturally to consider the set of formal barycenters of the manifold. |
---|