Lagrangian Approach to Dispersionless KdV Hierarchy
We derive a Lagrangian based approach to study the compatible Hamiltonian structure of the dispersionless KdV and supersymmetric KdV hierarchies and claim that our treatment of the problem serves as a very useful supplement of the so-called r-matrix method. We suggest specific ways to construct resu...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147203 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Lagrangian Approach to Dispersionless KdV Hierarchy / A. Choudhuri, B. Talukdar, U. Das // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147203 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1472032019-02-14T01:23:33Z Lagrangian Approach to Dispersionless KdV Hierarchy Choudhuri, A. Talukdar, B. Das, U. We derive a Lagrangian based approach to study the compatible Hamiltonian structure of the dispersionless KdV and supersymmetric KdV hierarchies and claim that our treatment of the problem serves as a very useful supplement of the so-called r-matrix method. We suggest specific ways to construct results for conserved densities and Hamiltonian operators. The Lagrangian formulation, via Noether's theorem, provides a method to make the relation between symmetries and conserved quantities more precise. We have exploited this fact to study the variational symmetries of the dispersionless KdV equation. 2007 Article Lagrangian Approach to Dispersionless KdV Hierarchy / A. Choudhuri, B. Talukdar, U. Das // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35A15; 37K05; 37K10 http://dspace.nbuv.gov.ua/handle/123456789/147203 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We derive a Lagrangian based approach to study the compatible Hamiltonian structure of the dispersionless KdV and supersymmetric KdV hierarchies and claim that our treatment of the problem serves as a very useful supplement of the so-called r-matrix method. We suggest specific ways to construct results for conserved densities and Hamiltonian operators. The Lagrangian formulation, via Noether's theorem, provides a method to make the relation between symmetries and conserved quantities more precise. We have exploited this fact to study the variational symmetries of the dispersionless KdV equation. |
format |
Article |
author |
Choudhuri, A. Talukdar, B. Das, U. |
spellingShingle |
Choudhuri, A. Talukdar, B. Das, U. Lagrangian Approach to Dispersionless KdV Hierarchy Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Choudhuri, A. Talukdar, B. Das, U. |
author_sort |
Choudhuri, A. |
title |
Lagrangian Approach to Dispersionless KdV Hierarchy |
title_short |
Lagrangian Approach to Dispersionless KdV Hierarchy |
title_full |
Lagrangian Approach to Dispersionless KdV Hierarchy |
title_fullStr |
Lagrangian Approach to Dispersionless KdV Hierarchy |
title_full_unstemmed |
Lagrangian Approach to Dispersionless KdV Hierarchy |
title_sort |
lagrangian approach to dispersionless kdv hierarchy |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147203 |
citation_txt |
Lagrangian Approach to Dispersionless KdV Hierarchy / A. Choudhuri, B. Talukdar, U. Das // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT choudhuria lagrangianapproachtodispersionlesskdvhierarchy AT talukdarb lagrangianapproachtodispersionlesskdvhierarchy AT dasu lagrangianapproachtodispersionlesskdvhierarchy |
first_indexed |
2023-05-20T17:26:58Z |
last_indexed |
2023-05-20T17:26:58Z |
_version_ |
1796153319053328384 |