Lagrangian Approach to Dispersionless KdV Hierarchy

We derive a Lagrangian based approach to study the compatible Hamiltonian structure of the dispersionless KdV and supersymmetric KdV hierarchies and claim that our treatment of the problem serves as a very useful supplement of the so-called r-matrix method. We suggest specific ways to construct resu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Choudhuri, A., Talukdar, B., Das, U.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147203
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Lagrangian Approach to Dispersionless KdV Hierarchy / A. Choudhuri, B. Talukdar, U. Das // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147203
record_format dspace
spelling irk-123456789-1472032019-02-14T01:23:33Z Lagrangian Approach to Dispersionless KdV Hierarchy Choudhuri, A. Talukdar, B. Das, U. We derive a Lagrangian based approach to study the compatible Hamiltonian structure of the dispersionless KdV and supersymmetric KdV hierarchies and claim that our treatment of the problem serves as a very useful supplement of the so-called r-matrix method. We suggest specific ways to construct results for conserved densities and Hamiltonian operators. The Lagrangian formulation, via Noether's theorem, provides a method to make the relation between symmetries and conserved quantities more precise. We have exploited this fact to study the variational symmetries of the dispersionless KdV equation. 2007 Article Lagrangian Approach to Dispersionless KdV Hierarchy / A. Choudhuri, B. Talukdar, U. Das // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35A15; 37K05; 37K10 http://dspace.nbuv.gov.ua/handle/123456789/147203 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We derive a Lagrangian based approach to study the compatible Hamiltonian structure of the dispersionless KdV and supersymmetric KdV hierarchies and claim that our treatment of the problem serves as a very useful supplement of the so-called r-matrix method. We suggest specific ways to construct results for conserved densities and Hamiltonian operators. The Lagrangian formulation, via Noether's theorem, provides a method to make the relation between symmetries and conserved quantities more precise. We have exploited this fact to study the variational symmetries of the dispersionless KdV equation.
format Article
author Choudhuri, A.
Talukdar, B.
Das, U.
spellingShingle Choudhuri, A.
Talukdar, B.
Das, U.
Lagrangian Approach to Dispersionless KdV Hierarchy
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Choudhuri, A.
Talukdar, B.
Das, U.
author_sort Choudhuri, A.
title Lagrangian Approach to Dispersionless KdV Hierarchy
title_short Lagrangian Approach to Dispersionless KdV Hierarchy
title_full Lagrangian Approach to Dispersionless KdV Hierarchy
title_fullStr Lagrangian Approach to Dispersionless KdV Hierarchy
title_full_unstemmed Lagrangian Approach to Dispersionless KdV Hierarchy
title_sort lagrangian approach to dispersionless kdv hierarchy
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147203
citation_txt Lagrangian Approach to Dispersionless KdV Hierarchy / A. Choudhuri, B. Talukdar, U. Das // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT choudhuria lagrangianapproachtodispersionlesskdvhierarchy
AT talukdarb lagrangianapproachtodispersionlesskdvhierarchy
AT dasu lagrangianapproachtodispersionlesskdvhierarchy
first_indexed 2023-05-20T17:26:58Z
last_indexed 2023-05-20T17:26:58Z
_version_ 1796153319053328384