Conformal Powers of the Laplacian via Stereographic Projection
A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on E...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147207 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147207 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1472072019-02-14T01:26:01Z Conformal Powers of the Laplacian via Stereographic Projection Graham, C.R. A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on Euclidean space (the k-th power of the Euclidean Laplacian) via conjugation by the stereographic projection mapping. 2007 Article Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53B20 http://dspace.nbuv.gov.ua/handle/123456789/147207 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on Euclidean space (the k-th power of the Euclidean Laplacian) via conjugation by the stereographic projection mapping. |
format |
Article |
author |
Graham, C.R. |
spellingShingle |
Graham, C.R. Conformal Powers of the Laplacian via Stereographic Projection Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Graham, C.R. |
author_sort |
Graham, C.R. |
title |
Conformal Powers of the Laplacian via Stereographic Projection |
title_short |
Conformal Powers of the Laplacian via Stereographic Projection |
title_full |
Conformal Powers of the Laplacian via Stereographic Projection |
title_fullStr |
Conformal Powers of the Laplacian via Stereographic Projection |
title_full_unstemmed |
Conformal Powers of the Laplacian via Stereographic Projection |
title_sort |
conformal powers of the laplacian via stereographic projection |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147207 |
citation_txt |
Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT grahamcr conformalpowersofthelaplacianviastereographicprojection |
first_indexed |
2023-05-20T17:26:50Z |
last_indexed |
2023-05-20T17:26:50Z |
_version_ |
1796153313934180352 |