Conformal Powers of the Laplacian via Stereographic Projection

A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on E...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Graham, C.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147207
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147207
record_format dspace
spelling irk-123456789-1472072019-02-14T01:26:01Z Conformal Powers of the Laplacian via Stereographic Projection Graham, C.R. A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on Euclidean space (the k-th power of the Euclidean Laplacian) via conjugation by the stereographic projection mapping. 2007 Article Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53B20 http://dspace.nbuv.gov.ua/handle/123456789/147207 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on Euclidean space (the k-th power of the Euclidean Laplacian) via conjugation by the stereographic projection mapping.
format Article
author Graham, C.R.
spellingShingle Graham, C.R.
Conformal Powers of the Laplacian via Stereographic Projection
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Graham, C.R.
author_sort Graham, C.R.
title Conformal Powers of the Laplacian via Stereographic Projection
title_short Conformal Powers of the Laplacian via Stereographic Projection
title_full Conformal Powers of the Laplacian via Stereographic Projection
title_fullStr Conformal Powers of the Laplacian via Stereographic Projection
title_full_unstemmed Conformal Powers of the Laplacian via Stereographic Projection
title_sort conformal powers of the laplacian via stereographic projection
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147207
citation_txt Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT grahamcr conformalpowersofthelaplacianviastereographicprojection
first_indexed 2023-05-20T17:26:50Z
last_indexed 2023-05-20T17:26:50Z
_version_ 1796153313934180352