Vacuum Energy as Spectral Geometry

Quantum vacuum energy (Casimir energy) is reviewed for a mathematical audience as a topic in spectral theory. Then some one-dimensional systems are solved exactly, in terms of closed classical paths and periodic orbits. The relations among local spectral densities, energy densities, global eigenvalu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Fulling, S.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147208
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Vacuum Energy as Spectral Geometry / S.A. Fulling // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 60 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Quantum vacuum energy (Casimir energy) is reviewed for a mathematical audience as a topic in spectral theory. Then some one-dimensional systems are solved exactly, in terms of closed classical paths and periodic orbits. The relations among local spectral densities, energy densities, global eigenvalue densities, and total energies are demonstrated. This material provides background and motivation for the treatment of higher-dimensional systems (self-adjoint second-order partial differential operators) by semiclassical approximation and other methods.