2025-02-23T06:55:23-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147209%22&qt=morelikethis&rows=5
2025-02-23T06:55:23-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147209%22&qt=morelikethis&rows=5
2025-02-23T06:55:23-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T06:55:23-05:00 DEBUG: Deserialized SOLR response
On Gauss-Bonnet Curvatures
The (2k)-th Gauss-Bonnet curvature is a generalization to higher dimensions of the (2k)-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for k =1. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where t...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2007
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147209 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-147209 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1472092019-02-14T01:24:10Z On Gauss-Bonnet Curvatures Labbi, M.L. The (2k)-th Gauss-Bonnet curvature is a generalization to higher dimensions of the (2k)-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for k =1. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where they are known as the Lagrangian of Lovelock gravity, Gauss-Bonnet Gravity and Lanczos gravity. In this paper we present various aspects of these curvature invariants and review their variational properties. In particular, we discuss natural generalizations of the Yamabe problem, Einstein metrics and minimal submanifolds. 2007 Article On Gauss-Bonnet Curvatures / M.L. Labbi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 38 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53C20; 53C25 http://dspace.nbuv.gov.ua/handle/123456789/147209 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The (2k)-th Gauss-Bonnet curvature is a generalization to higher dimensions of the (2k)-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for k =1. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where they are known as the Lagrangian of Lovelock gravity, Gauss-Bonnet Gravity and Lanczos gravity. In this paper we present various aspects of these curvature invariants and review their variational properties. In particular, we discuss natural generalizations of the Yamabe problem, Einstein metrics and minimal submanifolds. |
format |
Article |
author |
Labbi, M.L. |
spellingShingle |
Labbi, M.L. On Gauss-Bonnet Curvatures Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Labbi, M.L. |
author_sort |
Labbi, M.L. |
title |
On Gauss-Bonnet Curvatures |
title_short |
On Gauss-Bonnet Curvatures |
title_full |
On Gauss-Bonnet Curvatures |
title_fullStr |
On Gauss-Bonnet Curvatures |
title_full_unstemmed |
On Gauss-Bonnet Curvatures |
title_sort |
on gauss-bonnet curvatures |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147209 |
citation_txt |
On Gauss-Bonnet Curvatures / M.L. Labbi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 38 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT labbiml ongaussbonnetcurvatures |
first_indexed |
2023-05-20T17:26:50Z |
last_indexed |
2023-05-20T17:26:50Z |
_version_ |
1796153314040086528 |