Dimensional Reduction of Conformal Tensors and Einstein-Weyl Spaces
Conformal Weyl and Cotton tensors are dimensionally reduced by a Kaluza-Klein procedure. Explicit formulas are given for reducing from four and three dimensions to three and two dimensions, respectively. When the higher dimensional conformal tensor vanishes because the space is conformallly flat, th...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147210 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Dimensional Reduction of Conformal Tensors and Einstein-Weyl Spaces / R. Jackiw // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147210 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1472102019-02-14T01:27:22Z Dimensional Reduction of Conformal Tensors and Einstein-Weyl Spaces Jackiw, R. Conformal Weyl and Cotton tensors are dimensionally reduced by a Kaluza-Klein procedure. Explicit formulas are given for reducing from four and three dimensions to three and two dimensions, respectively. When the higher dimensional conformal tensor vanishes because the space is conformallly flat, the lower-dimensional Kaluza-Klein functions satisfy equations that coincide with the Einstein-Weyl equations in three dimensions and kink equations in two dimensions. 2007 Article Dimensional Reduction of Conformal Tensors and Einstein-Weyl Spaces / R. Jackiw // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 7 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81T40 http://dspace.nbuv.gov.ua/handle/123456789/147210 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Conformal Weyl and Cotton tensors are dimensionally reduced by a Kaluza-Klein procedure. Explicit formulas are given for reducing from four and three dimensions to three and two dimensions, respectively. When the higher dimensional conformal tensor vanishes because the space is conformallly flat, the lower-dimensional Kaluza-Klein functions satisfy equations that coincide with the Einstein-Weyl equations in three dimensions and kink equations in two dimensions. |
format |
Article |
author |
Jackiw, R. |
spellingShingle |
Jackiw, R. Dimensional Reduction of Conformal Tensors and Einstein-Weyl Spaces Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Jackiw, R. |
author_sort |
Jackiw, R. |
title |
Dimensional Reduction of Conformal Tensors and Einstein-Weyl Spaces |
title_short |
Dimensional Reduction of Conformal Tensors and Einstein-Weyl Spaces |
title_full |
Dimensional Reduction of Conformal Tensors and Einstein-Weyl Spaces |
title_fullStr |
Dimensional Reduction of Conformal Tensors and Einstein-Weyl Spaces |
title_full_unstemmed |
Dimensional Reduction of Conformal Tensors and Einstein-Weyl Spaces |
title_sort |
dimensional reduction of conformal tensors and einstein-weyl spaces |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147210 |
citation_txt |
Dimensional Reduction of Conformal Tensors and Einstein-Weyl Spaces / R. Jackiw // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 7 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT jackiwr dimensionalreductionofconformaltensorsandeinsteinweylspaces |
first_indexed |
2023-05-20T17:26:59Z |
last_indexed |
2023-05-20T17:26:59Z |
_version_ |
1796153319577616384 |