Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem
A direct procedure for determining the propagator associated with a quantum mechanical problem was given by the Path Integration Procedure of Feynman. The Green function, which is the Fourier Transform with respect to the time variable of the propagator, can be derived later. In our approach, with t...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147218 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem / M. Moshinsky, E. Sadurní, Adolfo del Campo // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147218 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1472182019-02-14T01:26:46Z Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem Moshinsky, M. Sadurní, E. del Campo, A. A direct procedure for determining the propagator associated with a quantum mechanical problem was given by the Path Integration Procedure of Feynman. The Green function, which is the Fourier Transform with respect to the time variable of the propagator, can be derived later. In our approach, with the help of a Laplace transform, a direct way to get the energy dependent Green function is presented, and the propagator can be obtained later with an inverse Laplace transform. The method is illustrated through simple one dimensional examples and for time independent potentials, though it can be generalized to the derivation of more complicated propagators. 2007 Article Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem / M. Moshinsky, E. Sadurní, Adolfo del Campo // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 6 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81V35; 81Q05 http://dspace.nbuv.gov.ua/handle/123456789/147218 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A direct procedure for determining the propagator associated with a quantum mechanical problem was given by the Path Integration Procedure of Feynman. The Green function, which is the Fourier Transform with respect to the time variable of the propagator, can be derived later. In our approach, with the help of a Laplace transform, a direct way to get the energy dependent Green function is presented, and the propagator can be obtained later with an inverse Laplace transform. The method is illustrated through simple one dimensional examples and for time independent potentials, though it can be generalized to the derivation of more complicated propagators. |
format |
Article |
author |
Moshinsky, M. Sadurní, E. del Campo, A. |
spellingShingle |
Moshinsky, M. Sadurní, E. del Campo, A. Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Moshinsky, M. Sadurní, E. del Campo, A. |
author_sort |
Moshinsky, M. |
title |
Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem |
title_short |
Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem |
title_full |
Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem |
title_fullStr |
Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem |
title_full_unstemmed |
Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem |
title_sort |
alternative method for determining the feynman propagator of a non-relativistic quantum mechanical problem |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147218 |
citation_txt |
Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem / M. Moshinsky, E. Sadurní, Adolfo del Campo // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 6 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT moshinskym alternativemethodfordeterminingthefeynmanpropagatorofanonrelativisticquantummechanicalproblem AT sadurnie alternativemethodfordeterminingthefeynmanpropagatorofanonrelativisticquantummechanicalproblem AT delcampoa alternativemethodfordeterminingthefeynmanpropagatorofanonrelativisticquantummechanicalproblem |
first_indexed |
2023-05-20T17:26:59Z |
last_indexed |
2023-05-20T17:26:59Z |
_version_ |
1796153319998095360 |