Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
The main contribution of our paper is to give a partial classification of the quasi-exactly solvable Lie algebras of first order differential operators in three variables, and to show how this can be applied to the construction of new quasi-exactly solvable Schrödinger operators in three dimensions....
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147219 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions / M. Fortin Boisvert // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147219 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1472192019-02-14T01:26:49Z Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions Fortin Boisvert, M. The main contribution of our paper is to give a partial classification of the quasi-exactly solvable Lie algebras of first order differential operators in three variables, and to show how this can be applied to the construction of new quasi-exactly solvable Schrödinger operators in three dimensions. 2007 Article Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions / M. Fortin Boisvert // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81Q70; 22E70; 53C80 http://dspace.nbuv.gov.ua/handle/123456789/147219 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The main contribution of our paper is to give a partial classification of the quasi-exactly solvable Lie algebras of first order differential operators in three variables, and to show how this can be applied to the construction of new quasi-exactly solvable Schrödinger operators in three dimensions. |
format |
Article |
author |
Fortin Boisvert, M. |
spellingShingle |
Fortin Boisvert, M. Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Fortin Boisvert, M. |
author_sort |
Fortin Boisvert, M. |
title |
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions |
title_short |
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions |
title_full |
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions |
title_fullStr |
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions |
title_full_unstemmed |
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions |
title_sort |
quasi-exactly solvable schrödinger operators in three dimensions |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147219 |
citation_txt |
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions / M. Fortin Boisvert // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT fortinboisvertm quasiexactlysolvableschrodingeroperatorsinthreedimensions |
first_indexed |
2023-05-20T17:26:59Z |
last_indexed |
2023-05-20T17:26:59Z |
_version_ |
1796153320102952960 |