Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions

The main contribution of our paper is to give a partial classification of the quasi-exactly solvable Lie algebras of first order differential operators in three variables, and to show how this can be applied to the construction of new quasi-exactly solvable Schrödinger operators in three dimensions....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Fortin Boisvert, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147219
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions / M. Fortin Boisvert // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147219
record_format dspace
spelling irk-123456789-1472192019-02-14T01:26:49Z Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions Fortin Boisvert, M. The main contribution of our paper is to give a partial classification of the quasi-exactly solvable Lie algebras of first order differential operators in three variables, and to show how this can be applied to the construction of new quasi-exactly solvable Schrödinger operators in three dimensions. 2007 Article Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions / M. Fortin Boisvert // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81Q70; 22E70; 53C80 http://dspace.nbuv.gov.ua/handle/123456789/147219 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The main contribution of our paper is to give a partial classification of the quasi-exactly solvable Lie algebras of first order differential operators in three variables, and to show how this can be applied to the construction of new quasi-exactly solvable Schrödinger operators in three dimensions.
format Article
author Fortin Boisvert, M.
spellingShingle Fortin Boisvert, M.
Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Fortin Boisvert, M.
author_sort Fortin Boisvert, M.
title Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
title_short Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
title_full Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
title_fullStr Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
title_full_unstemmed Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions
title_sort quasi-exactly solvable schrödinger operators in three dimensions
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147219
citation_txt Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions / M. Fortin Boisvert // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT fortinboisvertm quasiexactlysolvableschrodingeroperatorsinthreedimensions
first_indexed 2023-05-20T17:26:59Z
last_indexed 2023-05-20T17:26:59Z
_version_ 1796153320102952960