Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian

For a class of singular potentials, including the Coulomb potential (in three and less dimensions) and V(x) = g/x² with the coefficient g in a certain range (x being a space coordinate in one or more dimensions), the corresponding Schrödinger operator is not automatically self-adjoint on its natural...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Fülöp, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147221
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian / T. Fülöp // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147221
record_format dspace
spelling irk-123456789-1472212019-02-14T01:26:55Z Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian Fülöp, T. For a class of singular potentials, including the Coulomb potential (in three and less dimensions) and V(x) = g/x² with the coefficient g in a certain range (x being a space coordinate in one or more dimensions), the corresponding Schrödinger operator is not automatically self-adjoint on its natural domain. Such operators admit more than one self-adjoint domain, and the spectrum and all physical consequences depend seriously on the self-adjoint version chosen. The article discusses how the self-adjoint domains can be identified in terms of a boundary condition for the asymptotic behaviour of the wave functions around the singularity, and what physical differences emerge for different self-adjoint versions of the Hamiltonian. The paper reviews and interprets known results, with the intention to provide a practical guide for all those interested in how to approach these ambiguous situations. 2007 Article Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian / T. Fülöp // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81Q10 http://dspace.nbuv.gov.ua/handle/123456789/147221 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For a class of singular potentials, including the Coulomb potential (in three and less dimensions) and V(x) = g/x² with the coefficient g in a certain range (x being a space coordinate in one or more dimensions), the corresponding Schrödinger operator is not automatically self-adjoint on its natural domain. Such operators admit more than one self-adjoint domain, and the spectrum and all physical consequences depend seriously on the self-adjoint version chosen. The article discusses how the self-adjoint domains can be identified in terms of a boundary condition for the asymptotic behaviour of the wave functions around the singularity, and what physical differences emerge for different self-adjoint versions of the Hamiltonian. The paper reviews and interprets known results, with the intention to provide a practical guide for all those interested in how to approach these ambiguous situations.
format Article
author Fülöp, T.
spellingShingle Fülöp, T.
Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Fülöp, T.
author_sort Fülöp, T.
title Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian
title_short Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian
title_full Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian
title_fullStr Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian
title_full_unstemmed Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian
title_sort singular potentials in quantum mechanics and ambiguity in the self-adjoint hamiltonian
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147221
citation_txt Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian / T. Fülöp // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT fulopt singularpotentialsinquantummechanicsandambiguityintheselfadjointhamiltonian
first_indexed 2023-05-20T17:27:00Z
last_indexed 2023-05-20T17:27:00Z
_version_ 1796153320312668160