An Additive Basis for the Chow Ring of M₀,₂(Pr,2)

We begin a study of the intersection theory of the moduli spaces of degree two stable maps from two-pointed rational curves to arbitrary-dimensional projective space. First we compute the Betti numbers of these spaces using Serre polynomial and equivariant Serre polynomial methods developed by E. Ge...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Cox, J.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147227
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:An Additive Basis for the Chow Ring of M₀,₂(Pr,2) / J.A. Cox // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147227
record_format dspace
spelling irk-123456789-1472272019-02-14T01:23:30Z An Additive Basis for the Chow Ring of M₀,₂(Pr,2) Cox, J.A. We begin a study of the intersection theory of the moduli spaces of degree two stable maps from two-pointed rational curves to arbitrary-dimensional projective space. First we compute the Betti numbers of these spaces using Serre polynomial and equivariant Serre polynomial methods developed by E. Getzler and R. Pandharipande. Then, via the excision sequence, we compute an additive basis for their Chow rings in terms of Chow rings of nonlinear Grassmannians, which have been described by Pandharipande. The ring structure of one of these Chow rings is addressed in a sequel to this paper. 2007 Article An Additive Basis for the Chow Ring of M₀,₂(Pr,2) / J.A. Cox // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 14C15; 14D22 http://dspace.nbuv.gov.ua/handle/123456789/147227 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We begin a study of the intersection theory of the moduli spaces of degree two stable maps from two-pointed rational curves to arbitrary-dimensional projective space. First we compute the Betti numbers of these spaces using Serre polynomial and equivariant Serre polynomial methods developed by E. Getzler and R. Pandharipande. Then, via the excision sequence, we compute an additive basis for their Chow rings in terms of Chow rings of nonlinear Grassmannians, which have been described by Pandharipande. The ring structure of one of these Chow rings is addressed in a sequel to this paper.
format Article
author Cox, J.A.
spellingShingle Cox, J.A.
An Additive Basis for the Chow Ring of M₀,₂(Pr,2)
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Cox, J.A.
author_sort Cox, J.A.
title An Additive Basis for the Chow Ring of M₀,₂(Pr,2)
title_short An Additive Basis for the Chow Ring of M₀,₂(Pr,2)
title_full An Additive Basis for the Chow Ring of M₀,₂(Pr,2)
title_fullStr An Additive Basis for the Chow Ring of M₀,₂(Pr,2)
title_full_unstemmed An Additive Basis for the Chow Ring of M₀,₂(Pr,2)
title_sort additive basis for the chow ring of m₀,₂(pr,2)
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147227
citation_txt An Additive Basis for the Chow Ring of M₀,₂(Pr,2) / J.A. Cox // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT coxja anadditivebasisforthechowringofm02pr2
AT coxja additivebasisforthechowringofm02pr2
first_indexed 2023-05-20T17:27:00Z
last_indexed 2023-05-20T17:27:00Z
_version_ 1796153320838004736