An Additive Basis for the Chow Ring of M₀,₂(Pr,2)
We begin a study of the intersection theory of the moduli spaces of degree two stable maps from two-pointed rational curves to arbitrary-dimensional projective space. First we compute the Betti numbers of these spaces using Serre polynomial and equivariant Serre polynomial methods developed by E. Ge...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147227 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | An Additive Basis for the Chow Ring of M₀,₂(Pr,2) / J.A. Cox // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147227 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1472272019-02-14T01:23:30Z An Additive Basis for the Chow Ring of M₀,₂(Pr,2) Cox, J.A. We begin a study of the intersection theory of the moduli spaces of degree two stable maps from two-pointed rational curves to arbitrary-dimensional projective space. First we compute the Betti numbers of these spaces using Serre polynomial and equivariant Serre polynomial methods developed by E. Getzler and R. Pandharipande. Then, via the excision sequence, we compute an additive basis for their Chow rings in terms of Chow rings of nonlinear Grassmannians, which have been described by Pandharipande. The ring structure of one of these Chow rings is addressed in a sequel to this paper. 2007 Article An Additive Basis for the Chow Ring of M₀,₂(Pr,2) / J.A. Cox // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 14C15; 14D22 http://dspace.nbuv.gov.ua/handle/123456789/147227 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We begin a study of the intersection theory of the moduli spaces of degree two stable maps from two-pointed rational curves to arbitrary-dimensional projective space. First we compute the Betti numbers of these spaces using Serre polynomial and equivariant Serre polynomial methods developed by E. Getzler and R. Pandharipande. Then, via the excision sequence, we compute an additive basis for their Chow rings in terms of Chow rings of nonlinear Grassmannians, which have been described by Pandharipande. The ring structure of one of these Chow rings is addressed in a sequel to this paper. |
format |
Article |
author |
Cox, J.A. |
spellingShingle |
Cox, J.A. An Additive Basis for the Chow Ring of M₀,₂(Pr,2) Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Cox, J.A. |
author_sort |
Cox, J.A. |
title |
An Additive Basis for the Chow Ring of M₀,₂(Pr,2) |
title_short |
An Additive Basis for the Chow Ring of M₀,₂(Pr,2) |
title_full |
An Additive Basis for the Chow Ring of M₀,₂(Pr,2) |
title_fullStr |
An Additive Basis for the Chow Ring of M₀,₂(Pr,2) |
title_full_unstemmed |
An Additive Basis for the Chow Ring of M₀,₂(Pr,2) |
title_sort |
additive basis for the chow ring of m₀,₂(pr,2) |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147227 |
citation_txt |
An Additive Basis for the Chow Ring of M₀,₂(Pr,2) / J.A. Cox // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT coxja anadditivebasisforthechowringofm02pr2 AT coxja additivebasisforthechowringofm02pr2 |
first_indexed |
2023-05-20T17:27:00Z |
last_indexed |
2023-05-20T17:27:00Z |
_version_ |
1796153320838004736 |