Monogenic Functions in Conformal Geometry
Monogenic functions are basic to Clifford analysis. On Euclidean space they are defined as smooth functions with values in the corresponding Clifford algebra satisfying a certain system of first order differential equations, usually referred to as the Dirac equation. There are two equally natural ex...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147228 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Monogenic Functions in Conformal Geometry / M. Eastwood, J. Ryan // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147228 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1472282019-02-14T01:23:32Z Monogenic Functions in Conformal Geometry Eastwood, M. Ryan, J. Monogenic functions are basic to Clifford analysis. On Euclidean space they are defined as smooth functions with values in the corresponding Clifford algebra satisfying a certain system of first order differential equations, usually referred to as the Dirac equation. There are two equally natural extensions of these equations to a Riemannian spin manifold only one of which is conformally invariant. We present a straightforward exposition. 2007 Article Monogenic Functions in Conformal Geometry / M. Eastwood, J. Ryan // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 18 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53A30; 58J70; 15A66 http://dspace.nbuv.gov.ua/handle/123456789/147228 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Monogenic functions are basic to Clifford analysis. On Euclidean space they are defined as smooth functions with values in the corresponding Clifford algebra satisfying a certain system of first order differential equations, usually referred to as the Dirac equation. There are two equally natural extensions of these equations to a Riemannian spin manifold only one of which is conformally invariant. We present a straightforward exposition. |
format |
Article |
author |
Eastwood, M. Ryan, J. |
spellingShingle |
Eastwood, M. Ryan, J. Monogenic Functions in Conformal Geometry Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Eastwood, M. Ryan, J. |
author_sort |
Eastwood, M. |
title |
Monogenic Functions in Conformal Geometry |
title_short |
Monogenic Functions in Conformal Geometry |
title_full |
Monogenic Functions in Conformal Geometry |
title_fullStr |
Monogenic Functions in Conformal Geometry |
title_full_unstemmed |
Monogenic Functions in Conformal Geometry |
title_sort |
monogenic functions in conformal geometry |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147228 |
citation_txt |
Monogenic Functions in Conformal Geometry / M. Eastwood, J. Ryan // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 18 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT eastwoodm monogenicfunctionsinconformalgeometry AT ryanj monogenicfunctionsinconformalgeometry |
first_indexed |
2023-05-20T17:27:00Z |
last_indexed |
2023-05-20T17:27:00Z |
_version_ |
1796153320943910912 |