Monogenic Functions in Conformal Geometry

Monogenic functions are basic to Clifford analysis. On Euclidean space they are defined as smooth functions with values in the corresponding Clifford algebra satisfying a certain system of first order differential equations, usually referred to as the Dirac equation. There are two equally natural ex...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Eastwood, M., Ryan, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147228
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Monogenic Functions in Conformal Geometry / M. Eastwood, J. Ryan // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147228
record_format dspace
spelling irk-123456789-1472282019-02-14T01:23:32Z Monogenic Functions in Conformal Geometry Eastwood, M. Ryan, J. Monogenic functions are basic to Clifford analysis. On Euclidean space they are defined as smooth functions with values in the corresponding Clifford algebra satisfying a certain system of first order differential equations, usually referred to as the Dirac equation. There are two equally natural extensions of these equations to a Riemannian spin manifold only one of which is conformally invariant. We present a straightforward exposition. 2007 Article Monogenic Functions in Conformal Geometry / M. Eastwood, J. Ryan // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 18 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53A30; 58J70; 15A66 http://dspace.nbuv.gov.ua/handle/123456789/147228 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Monogenic functions are basic to Clifford analysis. On Euclidean space they are defined as smooth functions with values in the corresponding Clifford algebra satisfying a certain system of first order differential equations, usually referred to as the Dirac equation. There are two equally natural extensions of these equations to a Riemannian spin manifold only one of which is conformally invariant. We present a straightforward exposition.
format Article
author Eastwood, M.
Ryan, J.
spellingShingle Eastwood, M.
Ryan, J.
Monogenic Functions in Conformal Geometry
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Eastwood, M.
Ryan, J.
author_sort Eastwood, M.
title Monogenic Functions in Conformal Geometry
title_short Monogenic Functions in Conformal Geometry
title_full Monogenic Functions in Conformal Geometry
title_fullStr Monogenic Functions in Conformal Geometry
title_full_unstemmed Monogenic Functions in Conformal Geometry
title_sort monogenic functions in conformal geometry
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147228
citation_txt Monogenic Functions in Conformal Geometry / M. Eastwood, J. Ryan // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 18 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT eastwoodm monogenicfunctionsinconformalgeometry
AT ryanj monogenicfunctionsinconformalgeometry
first_indexed 2023-05-20T17:27:00Z
last_indexed 2023-05-20T17:27:00Z
_version_ 1796153320943910912