Monodromy of a Class of Logarithmic Connections on an Elliptic Curve

The logarithmic connections studied in the paper are direct images of regular connections on line bundles over genus-2 double covers of the elliptic curve. We give an explicit parametrization of all such connections, determine their monodromy, differential Galois group and the underlying rank-2 vect...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Machu, Francois-Xavier
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147230
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Monodromy of a Class of Logarithmic Connections on an Elliptic Curve / Francois-Xavier Machu // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147230
record_format dspace
spelling irk-123456789-1472302019-02-14T01:23:37Z Monodromy of a Class of Logarithmic Connections on an Elliptic Curve Machu, Francois-Xavier The logarithmic connections studied in the paper are direct images of regular connections on line bundles over genus-2 double covers of the elliptic curve. We give an explicit parametrization of all such connections, determine their monodromy, differential Galois group and the underlying rank-2 vector bundle. The latter is described in terms of elementary transforms. The question of its (semi)-stability is addressed. 2007 Article Monodromy of a Class of Logarithmic Connections on an Elliptic Curve / Francois-Xavier Machu // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 19 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 14D21; 14H52; 14H60; 32S40 http://dspace.nbuv.gov.ua/handle/123456789/147230 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The logarithmic connections studied in the paper are direct images of regular connections on line bundles over genus-2 double covers of the elliptic curve. We give an explicit parametrization of all such connections, determine their monodromy, differential Galois group and the underlying rank-2 vector bundle. The latter is described in terms of elementary transforms. The question of its (semi)-stability is addressed.
format Article
author Machu, Francois-Xavier
spellingShingle Machu, Francois-Xavier
Monodromy of a Class of Logarithmic Connections on an Elliptic Curve
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Machu, Francois-Xavier
author_sort Machu, Francois-Xavier
title Monodromy of a Class of Logarithmic Connections on an Elliptic Curve
title_short Monodromy of a Class of Logarithmic Connections on an Elliptic Curve
title_full Monodromy of a Class of Logarithmic Connections on an Elliptic Curve
title_fullStr Monodromy of a Class of Logarithmic Connections on an Elliptic Curve
title_full_unstemmed Monodromy of a Class of Logarithmic Connections on an Elliptic Curve
title_sort monodromy of a class of logarithmic connections on an elliptic curve
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147230
citation_txt Monodromy of a Class of Logarithmic Connections on an Elliptic Curve / Francois-Xavier Machu // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 19 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT machufrancoisxavier monodromyofaclassoflogarithmicconnectionsonanellipticcurve
first_indexed 2023-05-20T17:27:01Z
last_indexed 2023-05-20T17:27:01Z
_version_ 1796153325426573312