Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility

We show that under certain technical assumptions any weakly nonlocal Hamiltonian structure compatible with a given nondegenerate weakly nonlocal symplectic structure J can be written as the Lie derivative of J −1 along a suitably chosen nonlocal vector field. Moreover, we present a new description f...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Sergyeyev, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147362
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility / A. Sergyeyev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine