Teichmüller Theory of Bordered Surfaces

We propose the graph description of Teichmüller theory of surfaces with marked points on boundary components (bordered surfaces). Introducing new parameters, we formulate this theory in terms of hyperbolic geometry. We can then describe both classical and quantum theories having the proper number of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Chekhov, L.O.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147366
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Teichmüller Theory of Bordered Surfaces / L.O. Chekhov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147366
record_format dspace
spelling irk-123456789-1473662019-02-15T01:24:35Z Teichmüller Theory of Bordered Surfaces Chekhov, L.O. We propose the graph description of Teichmüller theory of surfaces with marked points on boundary components (bordered surfaces). Introducing new parameters, we formulate this theory in terms of hyperbolic geometry. We can then describe both classical and quantum theories having the proper number of Thurston variables (foliation-shear coordinates), mapping-class group invariance (both classical and quantum), Poisson and quantum algebra of geodesic functions, and classical and quantum braid-group relations. These new algebras can be defined on the double of the corresponding graph related (in a novel way) to a double of the Riemann surface (which is a Riemann surface with holes, not a smooth Riemann surface). We enlarge the mapping class group allowing transformations relating different Teichmüller spaces of bordered surfaces of the same genus, same number of boundary components, and same total number of marked points but with arbitrary distributions of marked points among the boundary components. We describe the classical and quantum algebras and braid group relations for particular sets of geodesic functions corresponding to An and Dn algebras and discuss briefly the relation to the Thurston theory. 2007 Article Teichmüller Theory of Bordered Surfaces / L.O. Chekhov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 23 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37D40; 53C22 http://dspace.nbuv.gov.ua/handle/123456789/147366 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We propose the graph description of Teichmüller theory of surfaces with marked points on boundary components (bordered surfaces). Introducing new parameters, we formulate this theory in terms of hyperbolic geometry. We can then describe both classical and quantum theories having the proper number of Thurston variables (foliation-shear coordinates), mapping-class group invariance (both classical and quantum), Poisson and quantum algebra of geodesic functions, and classical and quantum braid-group relations. These new algebras can be defined on the double of the corresponding graph related (in a novel way) to a double of the Riemann surface (which is a Riemann surface with holes, not a smooth Riemann surface). We enlarge the mapping class group allowing transformations relating different Teichmüller spaces of bordered surfaces of the same genus, same number of boundary components, and same total number of marked points but with arbitrary distributions of marked points among the boundary components. We describe the classical and quantum algebras and braid group relations for particular sets of geodesic functions corresponding to An and Dn algebras and discuss briefly the relation to the Thurston theory.
format Article
author Chekhov, L.O.
spellingShingle Chekhov, L.O.
Teichmüller Theory of Bordered Surfaces
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Chekhov, L.O.
author_sort Chekhov, L.O.
title Teichmüller Theory of Bordered Surfaces
title_short Teichmüller Theory of Bordered Surfaces
title_full Teichmüller Theory of Bordered Surfaces
title_fullStr Teichmüller Theory of Bordered Surfaces
title_full_unstemmed Teichmüller Theory of Bordered Surfaces
title_sort teichmüller theory of bordered surfaces
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147366
citation_txt Teichmüller Theory of Bordered Surfaces / L.O. Chekhov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 23 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT chekhovlo teichmullertheoryofborderedsurfaces
first_indexed 2023-05-20T17:27:17Z
last_indexed 2023-05-20T17:27:17Z
_version_ 1796153328729587712