Clifford Algebras and Possible Kinematics
We review Bacry and Lévy-Leblond's work on possible kinematics as applied to 2-dimensional spacetimes, as well as the nine types of 2-dimensional Cayley-Klein geometries, illustrating how the Cayley-Klein geometries give homogeneous spacetimes for all but one of the kinematical groups. We then...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147367 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Clifford Algebras and Possible Kinematics / A.S. McRae // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147367 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1473672019-02-15T01:23:13Z Clifford Algebras and Possible Kinematics McRae, A.S. We review Bacry and Lévy-Leblond's work on possible kinematics as applied to 2-dimensional spacetimes, as well as the nine types of 2-dimensional Cayley-Klein geometries, illustrating how the Cayley-Klein geometries give homogeneous spacetimes for all but one of the kinematical groups. We then construct a two-parameter family of Clifford algebras that give a unified framework for representing both the Lie algebras as well as the kinematical groups, showing that these groups are true rotation groups. In addition we give conformal models for these spacetimes. 2007 Article Clifford Algebras and Possible Kinematics / A.S. McRae // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 28 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 11E88; 15A66; 53A17 http://dspace.nbuv.gov.ua/handle/123456789/147367 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We review Bacry and Lévy-Leblond's work on possible kinematics as applied to 2-dimensional spacetimes, as well as the nine types of 2-dimensional Cayley-Klein geometries, illustrating how the Cayley-Klein geometries give homogeneous spacetimes for all but one of the kinematical groups. We then construct a two-parameter family of Clifford algebras that give a unified framework for representing both the Lie algebras as well as the kinematical groups, showing that these groups are true rotation groups. In addition we give conformal models for these spacetimes. |
format |
Article |
author |
McRae, A.S. |
spellingShingle |
McRae, A.S. Clifford Algebras and Possible Kinematics Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
McRae, A.S. |
author_sort |
McRae, A.S. |
title |
Clifford Algebras and Possible Kinematics |
title_short |
Clifford Algebras and Possible Kinematics |
title_full |
Clifford Algebras and Possible Kinematics |
title_fullStr |
Clifford Algebras and Possible Kinematics |
title_full_unstemmed |
Clifford Algebras and Possible Kinematics |
title_sort |
clifford algebras and possible kinematics |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147367 |
citation_txt |
Clifford Algebras and Possible Kinematics / A.S. McRae // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 28 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT mcraeas cliffordalgebrasandpossiblekinematics |
first_indexed |
2023-05-20T17:27:10Z |
last_indexed |
2023-05-20T17:27:10Z |
_version_ |
1796153328835493888 |