Hidden Symmetries of Stochastic Models

In the matrix product states approach to n species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a SUq(n) quan...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Aneva, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147371
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hidden Symmetries of Stochastic Models / B. Aneva // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147371
record_format dspace
spelling irk-123456789-1473712019-02-15T01:25:12Z Hidden Symmetries of Stochastic Models Aneva, B. In the matrix product states approach to n species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a SUq(n) quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the SUq(n) symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly. 2007 Article Hidden Symmetries of Stochastic Models / B. Aneva // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 30 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 60J60; 17B80 http://dspace.nbuv.gov.ua/handle/123456789/147371 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In the matrix product states approach to n species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a SUq(n) quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the SUq(n) symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.
format Article
author Aneva, B.
spellingShingle Aneva, B.
Hidden Symmetries of Stochastic Models
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Aneva, B.
author_sort Aneva, B.
title Hidden Symmetries of Stochastic Models
title_short Hidden Symmetries of Stochastic Models
title_full Hidden Symmetries of Stochastic Models
title_fullStr Hidden Symmetries of Stochastic Models
title_full_unstemmed Hidden Symmetries of Stochastic Models
title_sort hidden symmetries of stochastic models
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147371
citation_txt Hidden Symmetries of Stochastic Models / B. Aneva // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 30 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT anevab hiddensymmetriesofstochasticmodels
first_indexed 2023-05-20T17:27:17Z
last_indexed 2023-05-20T17:27:17Z
_version_ 1796153329255972864