Bäcklund Transformation for the BC-Type Toda Lattice
We study an integrable case of n-particle Toda lattice: open chain with boundary terms containing 4 parameters. For this model we construct a Bäcklund transformation and prove its basic properties: canonicity, commutativity and spectrality. The Bäcklund transformation can be also viewed as a discret...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147374 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Bäcklund Transformation for the BC-Type Toda Lattice / V. Kuznetsov, E. Sklyanin // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147374 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1473742019-02-15T01:24:12Z Bäcklund Transformation for the BC-Type Toda Lattice Kuznetsov, V. Sklyanin, E. We study an integrable case of n-particle Toda lattice: open chain with boundary terms containing 4 parameters. For this model we construct a Bäcklund transformation and prove its basic properties: canonicity, commutativity and spectrality. The Bäcklund transformation can be also viewed as a discretized time dynamics. Two Lax matrices are used: of order 2 and of order 2n+2, which are mutually dual, sharing the same spectral curve. 2007 Article Bäcklund Transformation for the BC-Type Toda Lattice / V. Kuznetsov, E. Sklyanin // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 70H06 http://dspace.nbuv.gov.ua/handle/123456789/147374 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study an integrable case of n-particle Toda lattice: open chain with boundary terms containing 4 parameters. For this model we construct a Bäcklund transformation and prove its basic properties: canonicity, commutativity and spectrality. The Bäcklund transformation can be also viewed as a discretized time dynamics. Two Lax matrices are used: of order 2 and of order 2n+2, which are mutually dual, sharing the same spectral curve. |
format |
Article |
author |
Kuznetsov, V. Sklyanin, E. |
spellingShingle |
Kuznetsov, V. Sklyanin, E. Bäcklund Transformation for the BC-Type Toda Lattice Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Kuznetsov, V. Sklyanin, E. |
author_sort |
Kuznetsov, V. |
title |
Bäcklund Transformation for the BC-Type Toda Lattice |
title_short |
Bäcklund Transformation for the BC-Type Toda Lattice |
title_full |
Bäcklund Transformation for the BC-Type Toda Lattice |
title_fullStr |
Bäcklund Transformation for the BC-Type Toda Lattice |
title_full_unstemmed |
Bäcklund Transformation for the BC-Type Toda Lattice |
title_sort |
bäcklund transformation for the bc-type toda lattice |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147374 |
citation_txt |
Bäcklund Transformation for the BC-Type Toda Lattice / V. Kuznetsov, E. Sklyanin // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT kuznetsovv backlundtransformationforthebctypetodalattice AT sklyanine backlundtransformationforthebctypetodalattice |
first_indexed |
2023-05-20T17:27:10Z |
last_indexed |
2023-05-20T17:27:10Z |
_version_ |
1796153329570545664 |