SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU₂ corresponding to an irreducible representation of SU₂. The representation theory of SU₂ is reconsidered via the use of two truncated deformed oscillators....
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147375 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases / O. Albouy, M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 78 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147375 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1473752019-02-15T01:25:00Z SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases Albouy, O. Kibler, M.R. This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU₂ corresponding to an irreducible representation of SU₂. The representation theory of SU₂ is reconsidered via the use of two truncated deformed oscillators. This leads to replacement of the familiar scheme {j²,jz} by a scheme {j²,vra}, where the two-parameter operator vra is defined in the universal enveloping algebra of the Lie algebra su₂. The eigenvectors of the commuting set of operators {j²,vra} are adapted to a tower of chains SO₃⊃C₂j₊₁ (2j∈N∗), where C₂j₊₁ is the cyclic group of order 2j+1. In the case where 2j+1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices 2007 Article SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases / O. Albouy, M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 78 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81R50; 81R05; 81R10; 81R15 http://dspace.nbuv.gov.ua/handle/123456789/147375 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU₂ corresponding to an irreducible representation of SU₂. The representation theory of SU₂ is reconsidered via the use of two truncated deformed oscillators. This leads to replacement of the familiar scheme {j²,jz} by a scheme {j²,vra}, where the two-parameter operator vra is defined in the universal enveloping algebra of the Lie algebra su₂. The eigenvectors of the commuting set of operators {j²,vra} are adapted to a tower of chains SO₃⊃C₂j₊₁ (2j∈N∗), where C₂j₊₁ is the cyclic group of order 2j+1. In the case where 2j+1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices |
format |
Article |
author |
Albouy, O. Kibler, M.R. |
spellingShingle |
Albouy, O. Kibler, M.R. SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Albouy, O. Kibler, M.R. |
author_sort |
Albouy, O. |
title |
SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases |
title_short |
SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases |
title_full |
SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases |
title_fullStr |
SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases |
title_full_unstemmed |
SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases |
title_sort |
su₂ nonstandard bases: case of mutually unbiased bases |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147375 |
citation_txt |
SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases / O. Albouy, M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 78 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT albouyo su2nonstandardbasescaseofmutuallyunbiasedbases AT kiblermr su2nonstandardbasescaseofmutuallyunbiasedbases |
first_indexed |
2023-05-20T17:27:11Z |
last_indexed |
2023-05-20T17:27:11Z |
_version_ |
1796153329676451840 |