SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases

This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU₂ corresponding to an irreducible representation of SU₂. The representation theory of SU₂ is reconsidered via the use of two truncated deformed oscillators....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Albouy, O., Kibler, M.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147375
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases / O. Albouy, M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 78 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147375
record_format dspace
spelling irk-123456789-1473752019-02-15T01:25:00Z SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases Albouy, O. Kibler, M.R. This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU₂ corresponding to an irreducible representation of SU₂. The representation theory of SU₂ is reconsidered via the use of two truncated deformed oscillators. This leads to replacement of the familiar scheme {j²,jz} by a scheme {j²,vra}, where the two-parameter operator vra is defined in the universal enveloping algebra of the Lie algebra su₂. The eigenvectors of the commuting set of operators {j²,vra} are adapted to a tower of chains SO₃⊃C₂j₊₁ (2j∈N∗), where C₂j₊₁ is the cyclic group of order 2j+1. In the case where 2j+1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices 2007 Article SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases / O. Albouy, M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 78 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81R50; 81R05; 81R10; 81R15 http://dspace.nbuv.gov.ua/handle/123456789/147375 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU₂ corresponding to an irreducible representation of SU₂. The representation theory of SU₂ is reconsidered via the use of two truncated deformed oscillators. This leads to replacement of the familiar scheme {j²,jz} by a scheme {j²,vra}, where the two-parameter operator vra is defined in the universal enveloping algebra of the Lie algebra su₂. The eigenvectors of the commuting set of operators {j²,vra} are adapted to a tower of chains SO₃⊃C₂j₊₁ (2j∈N∗), where C₂j₊₁ is the cyclic group of order 2j+1. In the case where 2j+1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices
format Article
author Albouy, O.
Kibler, M.R.
spellingShingle Albouy, O.
Kibler, M.R.
SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Albouy, O.
Kibler, M.R.
author_sort Albouy, O.
title SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
title_short SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
title_full SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
title_fullStr SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
title_full_unstemmed SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases
title_sort su₂ nonstandard bases: case of mutually unbiased bases
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147375
citation_txt SU₂ Nonstandard Bases: Case of Mutually Unbiased Bases / O. Albouy, M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 78 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT albouyo su2nonstandardbasescaseofmutuallyunbiasedbases
AT kiblermr su2nonstandardbasescaseofmutuallyunbiasedbases
first_indexed 2023-05-20T17:27:11Z
last_indexed 2023-05-20T17:27:11Z
_version_ 1796153329676451840