From su(2) Gaudin Models to Integrable Tops
In the present paper we derive two well-known integrable cases of rigid body dynamics (the Lagrange top and the Clebsch system) performing an algebraic contraction on the two-body Lax matrices governing the (classical) su(2) Gaudin models. The procedure preserves the linear r-matrix formulation of t...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147380 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | From su(2) Gaudin Models to Integrable Tops / M. Petrera, O. Ragnisco // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 29 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In the present paper we derive two well-known integrable cases of rigid body dynamics (the Lagrange top and the Clebsch system) performing an algebraic contraction on the two-body Lax matrices governing the (classical) su(2) Gaudin models. The procedure preserves the linear r-matrix formulation of the ancestor models. We give the Lax representation of the resulting integrable systems in terms of su(2) Lax matrices with rational and elliptic dependencies on the spectral parameter. We finally give some results about the many-body extensions of the constructed systems. |
---|