Time Asymmetric Quantum Mechanics

The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1) for states or the Heisenberg equation (6a) for observables are given by a unitary group. Dirac...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Bohm, A.R., Gadella, M., Kielanowski, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147386
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Time Asymmetric Quantum Mechanics / A.R. Bohm, M. Gadella, P. Kielanowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147386
record_format dspace
spelling irk-123456789-1473862019-02-15T01:24:09Z Time Asymmetric Quantum Mechanics Bohm, A.R. Gadella, M. Kielanowski, P. The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1) for states or the Heisenberg equation (6a) for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space) of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus) and observables (defined by a registration apparatus (detector)). If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence) one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t₀≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics. 2011 Article Time Asymmetric Quantum Mechanics / A.R. Bohm, M. Gadella, P. Kielanowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 28 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81Q65 http://dspace.nbuv.gov.ua/handle/123456789/147386 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1) for states or the Heisenberg equation (6a) for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space) of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus) and observables (defined by a registration apparatus (detector)). If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence) one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t₀≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.
format Article
author Bohm, A.R.
Gadella, M.
Kielanowski, P.
spellingShingle Bohm, A.R.
Gadella, M.
Kielanowski, P.
Time Asymmetric Quantum Mechanics
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bohm, A.R.
Gadella, M.
Kielanowski, P.
author_sort Bohm, A.R.
title Time Asymmetric Quantum Mechanics
title_short Time Asymmetric Quantum Mechanics
title_full Time Asymmetric Quantum Mechanics
title_fullStr Time Asymmetric Quantum Mechanics
title_full_unstemmed Time Asymmetric Quantum Mechanics
title_sort time asymmetric quantum mechanics
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147386
citation_txt Time Asymmetric Quantum Mechanics / A.R. Bohm, M. Gadella, P. Kielanowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 28 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bohmar timeasymmetricquantummechanics
AT gadellam timeasymmetricquantummechanics
AT kielanowskip timeasymmetricquantummechanics
first_indexed 2023-05-20T17:27:37Z
last_indexed 2023-05-20T17:27:37Z
_version_ 1796153339366342656