Recurrence Coefficients of a New Generalization of the Meixner Polynomials

We investigate new generalizations of the Meixner polynomials on the lattice N, on the shifted lattice N+1−β and on the bi-lattice N∪(N+1−β). We show that the coefficients of the three-term recurrence relation for the orthogonal polynomials are related to the solutions of the fifth Painlevé equation...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Filipuk, G., Van Assche, W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147388
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Recurrence Coefficients of a New Generalization of the Meixner Polynomials / G. Filipuk, W. Van Assche // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We investigate new generalizations of the Meixner polynomials on the lattice N, on the shifted lattice N+1−β and on the bi-lattice N∪(N+1−β). We show that the coefficients of the three-term recurrence relation for the orthogonal polynomials are related to the solutions of the fifth Painlevé equation PV. Initial conditions for different lattices can be transformed to the classical solutions of PV with special values of the parameters. We also study one property of the Bäcklund transformation of PV.