Recurrence Coefficients of a New Generalization of the Meixner Polynomials

We investigate new generalizations of the Meixner polynomials on the lattice N, on the shifted lattice N+1−β and on the bi-lattice N∪(N+1−β). We show that the coefficients of the three-term recurrence relation for the orthogonal polynomials are related to the solutions of the fifth Painlevé equation...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Filipuk, G., Van Assche, W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147388
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Recurrence Coefficients of a New Generalization of the Meixner Polynomials / G. Filipuk, W. Van Assche // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147388
record_format dspace
spelling irk-123456789-1473882019-02-15T01:22:59Z Recurrence Coefficients of a New Generalization of the Meixner Polynomials Filipuk, G. Van Assche, W. We investigate new generalizations of the Meixner polynomials on the lattice N, on the shifted lattice N+1−β and on the bi-lattice N∪(N+1−β). We show that the coefficients of the three-term recurrence relation for the orthogonal polynomials are related to the solutions of the fifth Painlevé equation PV. Initial conditions for different lattices can be transformed to the classical solutions of PV with special values of the parameters. We also study one property of the Bäcklund transformation of PV. 2011 Article Recurrence Coefficients of a New Generalization of the Meixner Polynomials / G. Filipuk, W. Van Assche // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 12 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M55; 33E17; 33C47; 42C05; 64Q30 DOI:10.3842/SIGMA.2011.068 http://dspace.nbuv.gov.ua/handle/123456789/147388 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We investigate new generalizations of the Meixner polynomials on the lattice N, on the shifted lattice N+1−β and on the bi-lattice N∪(N+1−β). We show that the coefficients of the three-term recurrence relation for the orthogonal polynomials are related to the solutions of the fifth Painlevé equation PV. Initial conditions for different lattices can be transformed to the classical solutions of PV with special values of the parameters. We also study one property of the Bäcklund transformation of PV.
format Article
author Filipuk, G.
Van Assche, W.
spellingShingle Filipuk, G.
Van Assche, W.
Recurrence Coefficients of a New Generalization of the Meixner Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Filipuk, G.
Van Assche, W.
author_sort Filipuk, G.
title Recurrence Coefficients of a New Generalization of the Meixner Polynomials
title_short Recurrence Coefficients of a New Generalization of the Meixner Polynomials
title_full Recurrence Coefficients of a New Generalization of the Meixner Polynomials
title_fullStr Recurrence Coefficients of a New Generalization of the Meixner Polynomials
title_full_unstemmed Recurrence Coefficients of a New Generalization of the Meixner Polynomials
title_sort recurrence coefficients of a new generalization of the meixner polynomials
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147388
citation_txt Recurrence Coefficients of a New Generalization of the Meixner Polynomials / G. Filipuk, W. Van Assche // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 12 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT filipukg recurrencecoefficientsofanewgeneralizationofthemeixnerpolynomials
AT vanasschew recurrencecoefficientsofanewgeneralizationofthemeixnerpolynomials
first_indexed 2023-05-20T17:27:19Z
last_indexed 2023-05-20T17:27:19Z
_version_ 1796153330727124992