Klein Topological Field Theories from Group Representations
We show that any complex (respectively real) representation of finite group naturally generates a open-closed (respectively Klein) topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the represe...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147393 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Klein Topological Field Theories from Group Representations / S.A. Loktev, S.M. Natanzon // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147393 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1473932019-02-23T10:23:36Z Klein Topological Field Theories from Group Representations Loktev, S.A. Natanzon, S.M. We show that any complex (respectively real) representation of finite group naturally generates a open-closed (respectively Klein) topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring. 2011 Article Klein Topological Field Theories from Group Representations / S.A. Loktev, S.M. Natanzon // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 28 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 57R56; 20C05 DOI:10.3842/SIGMA.2011.070 http://dspace.nbuv.gov.ua/handle/123456789/147393 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show that any complex (respectively real) representation of finite group naturally generates a open-closed (respectively Klein) topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring. |
format |
Article |
author |
Loktev, S.A. Natanzon, S.M. |
spellingShingle |
Loktev, S.A. Natanzon, S.M. Klein Topological Field Theories from Group Representations Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Loktev, S.A. Natanzon, S.M. |
author_sort |
Loktev, S.A. |
title |
Klein Topological Field Theories from Group Representations |
title_short |
Klein Topological Field Theories from Group Representations |
title_full |
Klein Topological Field Theories from Group Representations |
title_fullStr |
Klein Topological Field Theories from Group Representations |
title_full_unstemmed |
Klein Topological Field Theories from Group Representations |
title_sort |
klein topological field theories from group representations |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147393 |
citation_txt |
Klein Topological Field Theories from Group Representations / S.A. Loktev, S.M. Natanzon // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 28 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT loktevsa kleintopologicalfieldtheoriesfromgrouprepresentations AT natanzonsm kleintopologicalfieldtheoriesfromgrouprepresentations |
first_indexed |
2023-05-20T17:27:19Z |
last_indexed |
2023-05-20T17:27:19Z |
_version_ |
1796153330939985920 |