Klein Topological Field Theories from Group Representations

We show that any complex (respectively real) representation of finite group naturally generates a open-closed (respectively Klein) topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the represe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Loktev, S.A., Natanzon, S.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147393
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Klein Topological Field Theories from Group Representations / S.A. Loktev, S.M. Natanzon // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147393
record_format dspace
spelling irk-123456789-1473932019-02-23T10:23:36Z Klein Topological Field Theories from Group Representations Loktev, S.A. Natanzon, S.M. We show that any complex (respectively real) representation of finite group naturally generates a open-closed (respectively Klein) topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring. 2011 Article Klein Topological Field Theories from Group Representations / S.A. Loktev, S.M. Natanzon // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 28 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 57R56; 20C05 DOI:10.3842/SIGMA.2011.070 http://dspace.nbuv.gov.ua/handle/123456789/147393 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We show that any complex (respectively real) representation of finite group naturally generates a open-closed (respectively Klein) topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.
format Article
author Loktev, S.A.
Natanzon, S.M.
spellingShingle Loktev, S.A.
Natanzon, S.M.
Klein Topological Field Theories from Group Representations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Loktev, S.A.
Natanzon, S.M.
author_sort Loktev, S.A.
title Klein Topological Field Theories from Group Representations
title_short Klein Topological Field Theories from Group Representations
title_full Klein Topological Field Theories from Group Representations
title_fullStr Klein Topological Field Theories from Group Representations
title_full_unstemmed Klein Topological Field Theories from Group Representations
title_sort klein topological field theories from group representations
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147393
citation_txt Klein Topological Field Theories from Group Representations / S.A. Loktev, S.M. Natanzon // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 28 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT loktevsa kleintopologicalfieldtheoriesfromgrouprepresentations
AT natanzonsm kleintopologicalfieldtheoriesfromgrouprepresentations
first_indexed 2023-05-20T17:27:19Z
last_indexed 2023-05-20T17:27:19Z
_version_ 1796153330939985920