From Quantum AN (Calogero) to H₄ (Rational) Model
A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a fac...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147394 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147394 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1473942019-02-15T01:23:17Z From Quantum AN (Calogero) to H₄ (Rational) Model Turbiner, A.V. A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a factorization property for eigenfunctions, and admit (iv) the separation of the radial coordinate and, hence, the existence of the 2nd order integral, (v) an algebraic form in invariants of a discrete symmetry group (in space of orbits). 2011 Article From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35P99; 47A15; 47A67; 47A75 DOI:10.3842/SIGMA.2011.071 http://dspace.nbuv.gov.ua/handle/123456789/147394 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a factorization property for eigenfunctions, and admit (iv) the separation of the radial coordinate and, hence, the existence of the 2nd order integral, (v) an algebraic form in invariants of a discrete symmetry group (in space of orbits). |
format |
Article |
author |
Turbiner, A.V. |
spellingShingle |
Turbiner, A.V. From Quantum AN (Calogero) to H₄ (Rational) Model Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Turbiner, A.V. |
author_sort |
Turbiner, A.V. |
title |
From Quantum AN (Calogero) to H₄ (Rational) Model |
title_short |
From Quantum AN (Calogero) to H₄ (Rational) Model |
title_full |
From Quantum AN (Calogero) to H₄ (Rational) Model |
title_fullStr |
From Quantum AN (Calogero) to H₄ (Rational) Model |
title_full_unstemmed |
From Quantum AN (Calogero) to H₄ (Rational) Model |
title_sort |
from quantum an (calogero) to h₄ (rational) model |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147394 |
citation_txt |
From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT turbinerav fromquantumancalogerotoh4rationalmodel |
first_indexed |
2023-05-20T17:27:19Z |
last_indexed |
2023-05-20T17:27:19Z |
_version_ |
1796153331045892096 |