From Quantum AN (Calogero) to H₄ (Rational) Model

A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a fac...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Turbiner, A.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147394
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147394
record_format dspace
spelling irk-123456789-1473942019-02-15T01:23:17Z From Quantum AN (Calogero) to H₄ (Rational) Model Turbiner, A.V. A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a factorization property for eigenfunctions, and admit (iv) the separation of the radial coordinate and, hence, the existence of the 2nd order integral, (v) an algebraic form in invariants of a discrete symmetry group (in space of orbits). 2011 Article From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35P99; 47A15; 47A67; 47A75 DOI:10.3842/SIGMA.2011.071 http://dspace.nbuv.gov.ua/handle/123456789/147394 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a factorization property for eigenfunctions, and admit (iv) the separation of the radial coordinate and, hence, the existence of the 2nd order integral, (v) an algebraic form in invariants of a discrete symmetry group (in space of orbits).
format Article
author Turbiner, A.V.
spellingShingle Turbiner, A.V.
From Quantum AN (Calogero) to H₄ (Rational) Model
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Turbiner, A.V.
author_sort Turbiner, A.V.
title From Quantum AN (Calogero) to H₄ (Rational) Model
title_short From Quantum AN (Calogero) to H₄ (Rational) Model
title_full From Quantum AN (Calogero) to H₄ (Rational) Model
title_fullStr From Quantum AN (Calogero) to H₄ (Rational) Model
title_full_unstemmed From Quantum AN (Calogero) to H₄ (Rational) Model
title_sort from quantum an (calogero) to h₄ (rational) model
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147394
citation_txt From Quantum AN (Calogero) to H₄ (Rational) Model / A.V. Turbiner // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT turbinerav fromquantumancalogerotoh4rationalmodel
first_indexed 2023-05-20T17:27:19Z
last_indexed 2023-05-20T17:27:19Z
_version_ 1796153331045892096