Appell Transformation and Canonical Transforms
The interpretation of the optical Appell transformation, as previously elaborated in relation to the free-space paraxial propagation under both a rectangular and a circular cylindrical symmetry, is reviewed. Then, the caloric Appell transformation, well known in the theory of heat equation, is shown...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147395 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Appell Transformation and Canonical Transforms / A Torre // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 78 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147395 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1473952019-02-15T01:24:44Z Appell Transformation and Canonical Transforms Torre, A. The interpretation of the optical Appell transformation, as previously elaborated in relation to the free-space paraxial propagation under both a rectangular and a circular cylindrical symmetry, is reviewed. Then, the caloric Appell transformation, well known in the theory of heat equation, is shown to be amenable for a similar interpretation involving the Laplace transform rather than the Fourier transform, when dealing with the 1D heat equation. Accordingly, when considering the radial heat equation, suitably defined Hankel-type transforms come to be involved in the inherent Appell transformation. The analysis is aimed at outlining the link between the Appell transformation and the canonical transforms. 2011 Article Appell Transformation and Canonical Transforms / A Torre // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 78 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35K05; 35K10; 47D06 DOI:10.3842/SIGMA.2011.072 http://dspace.nbuv.gov.ua/handle/123456789/147395 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The interpretation of the optical Appell transformation, as previously elaborated in relation to the free-space paraxial propagation under both a rectangular and a circular cylindrical symmetry, is reviewed. Then, the caloric Appell transformation, well known in the theory of heat equation, is shown to be amenable for a similar interpretation involving the Laplace transform rather than the Fourier transform, when dealing with the 1D heat equation. Accordingly, when considering the radial heat equation, suitably defined Hankel-type transforms come to be involved in the inherent Appell transformation. The analysis is aimed at outlining the link between the Appell transformation and the canonical transforms. |
format |
Article |
author |
Torre, A. |
spellingShingle |
Torre, A. Appell Transformation and Canonical Transforms Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Torre, A. |
author_sort |
Torre, A. |
title |
Appell Transformation and Canonical Transforms |
title_short |
Appell Transformation and Canonical Transforms |
title_full |
Appell Transformation and Canonical Transforms |
title_fullStr |
Appell Transformation and Canonical Transforms |
title_full_unstemmed |
Appell Transformation and Canonical Transforms |
title_sort |
appell transformation and canonical transforms |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147395 |
citation_txt |
Appell Transformation and Canonical Transforms / A Torre // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 78 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT torrea appelltransformationandcanonicaltransforms |
first_indexed |
2023-05-20T17:27:19Z |
last_indexed |
2023-05-20T17:27:19Z |
_version_ |
1796153331150749696 |