On Initial Data in the Problem of Consistency on Cubic Lattices for 3×3 Determinants
The paper is devoted to complete proofs of theorems on consistency on cubic lattices for 3×3 determinants. The discrete nonlinear equations on Z² defined by the condition that the determinants of all 3×3 matrices of values of the scalar field at the points of the lattice Z² that form elementary 3×3...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147398 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The paper is devoted to complete proofs of theorems on consistency on cubic lattices for 3×3 determinants. The discrete nonlinear equations on Z² defined by the condition that the determinants of all 3×3 matrices of values of the scalar field at the points of the lattice Z² that form elementary 3×3 squares vanish are considered; some explicit concrete conditions of general position on initial data are formulated; and for arbitrary initial data satisfying these concrete conditions of general position, theorems on consistency on cubic lattices (a consistency ''around a cube'') for the considered discrete nonlinear equations on Z² defined by 3×3 determinants are proved. |
---|