On Initial Data in the Problem of Consistency on Cubic Lattices for 3×3 Determinants

The paper is devoted to complete proofs of theorems on consistency on cubic lattices for 3×3 determinants. The discrete nonlinear equations on Z² defined by the condition that the determinants of all 3×3 matrices of values of the scalar field at the points of the lattice Z² that form elementary 3×3...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Mokhov, O.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147398
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The paper is devoted to complete proofs of theorems on consistency on cubic lattices for 3×3 determinants. The discrete nonlinear equations on Z² defined by the condition that the determinants of all 3×3 matrices of values of the scalar field at the points of the lattice Z² that form elementary 3×3 squares vanish are considered; some explicit concrete conditions of general position on initial data are formulated; and for arbitrary initial data satisfying these concrete conditions of general position, theorems on consistency on cubic lattices (a consistency ''around a cube'') for the considered discrete nonlinear equations on Z² defined by 3×3 determinants are proved.