An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials

Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stie...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Ghressi, A., Khériji, L., Tounsi, M.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147401
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147401
record_format dspace
spelling irk-123456789-1474012019-02-15T01:24:05Z An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials Ghressi, A. Khériji, L. Tounsi, M.I. Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stieltjes series is obtained. Also, the structure relation is established. Some illustrative examples are highlighted. 2011 Article An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42C05; 33C45 DOI: http://dx.doi.org/10.3842/SIGMA.2011.092 http://dspace.nbuv.gov.ua/handle/123456789/147401 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stieltjes series is obtained. Also, the structure relation is established. Some illustrative examples are highlighted.
format Article
author Ghressi, A.
Khériji, L.
Tounsi, M.I.
spellingShingle Ghressi, A.
Khériji, L.
Tounsi, M.I.
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ghressi, A.
Khériji, L.
Tounsi, M.I.
author_sort Ghressi, A.
title An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
title_short An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
title_full An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
title_fullStr An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
title_full_unstemmed An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
title_sort introduction to the q-laguerre-hahn orthogonal q-polynomials
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147401
citation_txt An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ghressia anintroductiontotheqlaguerrehahnorthogonalqpolynomials
AT kherijil anintroductiontotheqlaguerrehahnorthogonalqpolynomials
AT tounsimi anintroductiontotheqlaguerrehahnorthogonalqpolynomials
AT ghressia introductiontotheqlaguerrehahnorthogonalqpolynomials
AT kherijil introductiontotheqlaguerrehahnorthogonalqpolynomials
AT tounsimi introductiontotheqlaguerrehahnorthogonalqpolynomials
first_indexed 2023-05-20T17:27:37Z
last_indexed 2023-05-20T17:27:37Z
_version_ 1796153340208349184