An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials
Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stie...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147401 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147401 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1474012019-02-15T01:24:05Z An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials Ghressi, A. Khériji, L. Tounsi, M.I. Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stieltjes series is obtained. Also, the structure relation is established. Some illustrative examples are highlighted. 2011 Article An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42C05; 33C45 DOI: http://dx.doi.org/10.3842/SIGMA.2011.092 http://dspace.nbuv.gov.ua/handle/123456789/147401 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Orthogonal q-polynomials associated with q-Laguerre-Hahn form will be studied as a generalization of the q-semiclassical forms via a suitable q-difference equation. The concept of class and a criterion to determinate it will be given. The q-Riccati equation satisfied by the corresponding formal Stieltjes series is obtained. Also, the structure relation is established. Some illustrative examples are highlighted. |
format |
Article |
author |
Ghressi, A. Khériji, L. Tounsi, M.I. |
spellingShingle |
Ghressi, A. Khériji, L. Tounsi, M.I. An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Ghressi, A. Khériji, L. Tounsi, M.I. |
author_sort |
Ghressi, A. |
title |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials |
title_short |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials |
title_full |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials |
title_fullStr |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials |
title_full_unstemmed |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials |
title_sort |
introduction to the q-laguerre-hahn orthogonal q-polynomials |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147401 |
citation_txt |
An Introduction to the q-Laguerre-Hahn Orthogonal q-Polynomials / A. Ghressi, L. Khériji, M.I. Tounsi // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT ghressia anintroductiontotheqlaguerrehahnorthogonalqpolynomials AT kherijil anintroductiontotheqlaguerrehahnorthogonalqpolynomials AT tounsimi anintroductiontotheqlaguerrehahnorthogonalqpolynomials AT ghressia introductiontotheqlaguerrehahnorthogonalqpolynomials AT kherijil introductiontotheqlaguerrehahnorthogonalqpolynomials AT tounsimi introductiontotheqlaguerrehahnorthogonalqpolynomials |
first_indexed |
2023-05-20T17:27:37Z |
last_indexed |
2023-05-20T17:27:37Z |
_version_ |
1796153340208349184 |