Quantum Analogs of Tensor Product Representations of su(1,1)

We study representations of Uq(su(1,1)) that can be considered as quantum analogs of tensor products of irreducible *-representations of the Lie algebra su(1,1). We determine the decomposition of these representations into irreducible *-representations of Uq(su(1,1)) by diagonalizing the action of t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Groenevelt, W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147402
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Analogs of Tensor Product Representations of su(1,1) / W. Groenevelt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147402
record_format dspace
spelling irk-123456789-1474022019-02-15T01:23:19Z Quantum Analogs of Tensor Product Representations of su(1,1) Groenevelt, W. We study representations of Uq(su(1,1)) that can be considered as quantum analogs of tensor products of irreducible *-representations of the Lie algebra su(1,1). We determine the decomposition of these representations into irreducible *-representations of Uq(su(1,1)) by diagonalizing the action of the Casimir operator on suitable subspaces of the representation spaces. This leads to an interpretation of the big q-Jacobi polynomials and big q-Jacobi functions as quantum analogs of Clebsch-Gordan coefficients. 2011 Article Quantum Analogs of Tensor Product Representations of su(1,1) / W. Groenevelt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 20G42; 33D80 DOI: http://dx.doi.org/10.3842/SIGMA.2011.077 http://dspace.nbuv.gov.ua/handle/123456789/147402 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study representations of Uq(su(1,1)) that can be considered as quantum analogs of tensor products of irreducible *-representations of the Lie algebra su(1,1). We determine the decomposition of these representations into irreducible *-representations of Uq(su(1,1)) by diagonalizing the action of the Casimir operator on suitable subspaces of the representation spaces. This leads to an interpretation of the big q-Jacobi polynomials and big q-Jacobi functions as quantum analogs of Clebsch-Gordan coefficients.
format Article
author Groenevelt, W.
spellingShingle Groenevelt, W.
Quantum Analogs of Tensor Product Representations of su(1,1)
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Groenevelt, W.
author_sort Groenevelt, W.
title Quantum Analogs of Tensor Product Representations of su(1,1)
title_short Quantum Analogs of Tensor Product Representations of su(1,1)
title_full Quantum Analogs of Tensor Product Representations of su(1,1)
title_fullStr Quantum Analogs of Tensor Product Representations of su(1,1)
title_full_unstemmed Quantum Analogs of Tensor Product Representations of su(1,1)
title_sort quantum analogs of tensor product representations of su(1,1)
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147402
citation_txt Quantum Analogs of Tensor Product Representations of su(1,1) / W. Groenevelt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT groeneveltw quantumanalogsoftensorproductrepresentationsofsu11
first_indexed 2023-05-20T17:27:20Z
last_indexed 2023-05-20T17:27:20Z
_version_ 1796153340314255360