Harmonic Analysis on Quantum Complex Hyperbolic Spaces

In this paper we obtain some results of harmonic analysis on quantum complex hyperbolic spaces. We introduce a quantum analog for the Laplace-Beltrami operator and its radial part. The latter appear to be second order q-difference operator, whose eigenfunctions are related to the Al-Salam-Chihara po...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Bershtein, O., Kolisnyk, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147404
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Harmonic Analysis on Quantum Complex Hyperbolic Spaces / O. Bershtein, Y. Kolisnyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147404
record_format dspace
spelling irk-123456789-1474042019-02-15T01:23:50Z Harmonic Analysis on Quantum Complex Hyperbolic Spaces Bershtein, O. Kolisnyk, Y. In this paper we obtain some results of harmonic analysis on quantum complex hyperbolic spaces. We introduce a quantum analog for the Laplace-Beltrami operator and its radial part. The latter appear to be second order q-difference operator, whose eigenfunctions are related to the Al-Salam-Chihara polynomials. We prove a Plancherel type theorem for it. 2011 Article Harmonic Analysis on Quantum Complex Hyperbolic Spaces / O. Bershtein, Y. Kolisnyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 20G42; 81R50; 33D45; 42C10 DOI: http://dx.doi.org/10.3842/SIGMA.2011.078 http://dspace.nbuv.gov.ua/handle/123456789/147404 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we obtain some results of harmonic analysis on quantum complex hyperbolic spaces. We introduce a quantum analog for the Laplace-Beltrami operator and its radial part. The latter appear to be second order q-difference operator, whose eigenfunctions are related to the Al-Salam-Chihara polynomials. We prove a Plancherel type theorem for it.
format Article
author Bershtein, O.
Kolisnyk, Y.
spellingShingle Bershtein, O.
Kolisnyk, Y.
Harmonic Analysis on Quantum Complex Hyperbolic Spaces
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bershtein, O.
Kolisnyk, Y.
author_sort Bershtein, O.
title Harmonic Analysis on Quantum Complex Hyperbolic Spaces
title_short Harmonic Analysis on Quantum Complex Hyperbolic Spaces
title_full Harmonic Analysis on Quantum Complex Hyperbolic Spaces
title_fullStr Harmonic Analysis on Quantum Complex Hyperbolic Spaces
title_full_unstemmed Harmonic Analysis on Quantum Complex Hyperbolic Spaces
title_sort harmonic analysis on quantum complex hyperbolic spaces
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147404
citation_txt Harmonic Analysis on Quantum Complex Hyperbolic Spaces / O. Bershtein, Y. Kolisnyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bershteino harmonicanalysisonquantumcomplexhyperbolicspaces
AT kolisnyky harmonicanalysisonquantumcomplexhyperbolicspaces
first_indexed 2023-05-20T17:27:38Z
last_indexed 2023-05-20T17:27:38Z
_version_ 1796153340523970560