Harmonic Analysis on Quantum Complex Hyperbolic Spaces
In this paper we obtain some results of harmonic analysis on quantum complex hyperbolic spaces. We introduce a quantum analog for the Laplace-Beltrami operator and its radial part. The latter appear to be second order q-difference operator, whose eigenfunctions are related to the Al-Salam-Chihara po...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147404 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Harmonic Analysis on Quantum Complex Hyperbolic Spaces / O. Bershtein, Y. Kolisnyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147404 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1474042019-02-15T01:23:50Z Harmonic Analysis on Quantum Complex Hyperbolic Spaces Bershtein, O. Kolisnyk, Y. In this paper we obtain some results of harmonic analysis on quantum complex hyperbolic spaces. We introduce a quantum analog for the Laplace-Beltrami operator and its radial part. The latter appear to be second order q-difference operator, whose eigenfunctions are related to the Al-Salam-Chihara polynomials. We prove a Plancherel type theorem for it. 2011 Article Harmonic Analysis on Quantum Complex Hyperbolic Spaces / O. Bershtein, Y. Kolisnyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 20G42; 81R50; 33D45; 42C10 DOI: http://dx.doi.org/10.3842/SIGMA.2011.078 http://dspace.nbuv.gov.ua/handle/123456789/147404 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we obtain some results of harmonic analysis on quantum complex hyperbolic spaces. We introduce a quantum analog for the Laplace-Beltrami operator and its radial part. The latter appear to be second order q-difference operator, whose eigenfunctions are related to the Al-Salam-Chihara polynomials. We prove a Plancherel type theorem for it. |
format |
Article |
author |
Bershtein, O. Kolisnyk, Y. |
spellingShingle |
Bershtein, O. Kolisnyk, Y. Harmonic Analysis on Quantum Complex Hyperbolic Spaces Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Bershtein, O. Kolisnyk, Y. |
author_sort |
Bershtein, O. |
title |
Harmonic Analysis on Quantum Complex Hyperbolic Spaces |
title_short |
Harmonic Analysis on Quantum Complex Hyperbolic Spaces |
title_full |
Harmonic Analysis on Quantum Complex Hyperbolic Spaces |
title_fullStr |
Harmonic Analysis on Quantum Complex Hyperbolic Spaces |
title_full_unstemmed |
Harmonic Analysis on Quantum Complex Hyperbolic Spaces |
title_sort |
harmonic analysis on quantum complex hyperbolic spaces |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147404 |
citation_txt |
Harmonic Analysis on Quantum Complex Hyperbolic Spaces / O. Bershtein, Y. Kolisnyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 21 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT bershteino harmonicanalysisonquantumcomplexhyperbolicspaces AT kolisnyky harmonicanalysisonquantumcomplexhyperbolicspaces |
first_indexed |
2023-05-20T17:27:38Z |
last_indexed |
2023-05-20T17:27:38Z |
_version_ |
1796153340523970560 |