Four-Dimensional Spin Foam Perturbation Theory

We define a four-dimensional spin-foam perturbation theory for the BF-theory with a B∧B potential term defined for a compact semi-simple Lie group G on a compact orientable 4-manifold M. This is done by using the formal spin foam perturbative series coming from the spin-foam generating functional. W...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Martins, J.F., Mikovic, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147406
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Four-Dimensional Spin Foam Perturbation Theory / J.F. Martins, A. Mikovic // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147406
record_format dspace
spelling irk-123456789-1474062019-02-15T01:24:46Z Four-Dimensional Spin Foam Perturbation Theory Martins, J.F. Mikovic, A. We define a four-dimensional spin-foam perturbation theory for the BF-theory with a B∧B potential term defined for a compact semi-simple Lie group G on a compact orientable 4-manifold M. This is done by using the formal spin foam perturbative series coming from the spin-foam generating functional. We then regularize the terms in the perturbative series by passing to the category of representations of the quantum group Uq(g) where g is the Lie algebra of G and q is a root of unity. The Chain-Mail formalism can be used to calculate the perturbative terms when the vector space of intertwiners Λ⊗Λ→A, where A is the adjoint representation of g, is 1-dimensional for each irrep Λ. We calculate the partition function Z in the dilute-gas limit for a special class of triangulations of restricted local complexity, which we conjecture to exist on any 4-manifold M. We prove that the first-order perturbative contribution vanishes for finite triangulations, so that we define a dilute-gas limit by using the second-order contribution. We show that Z is an analytic continuation of the Crane-Yetter partition function. Furthermore, we relate Z to the partition function for the F∧F theory. 2011 Article Four-Dimensional Spin Foam Perturbation Theory / J.F. Martins, A. Mikovic // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81T25; 81T45; 57R56 DOI: http://dx.doi.org/10.3842/SIGMA.2011.094 http://dspace.nbuv.gov.ua/handle/123456789/147406 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We define a four-dimensional spin-foam perturbation theory for the BF-theory with a B∧B potential term defined for a compact semi-simple Lie group G on a compact orientable 4-manifold M. This is done by using the formal spin foam perturbative series coming from the spin-foam generating functional. We then regularize the terms in the perturbative series by passing to the category of representations of the quantum group Uq(g) where g is the Lie algebra of G and q is a root of unity. The Chain-Mail formalism can be used to calculate the perturbative terms when the vector space of intertwiners Λ⊗Λ→A, where A is the adjoint representation of g, is 1-dimensional for each irrep Λ. We calculate the partition function Z in the dilute-gas limit for a special class of triangulations of restricted local complexity, which we conjecture to exist on any 4-manifold M. We prove that the first-order perturbative contribution vanishes for finite triangulations, so that we define a dilute-gas limit by using the second-order contribution. We show that Z is an analytic continuation of the Crane-Yetter partition function. Furthermore, we relate Z to the partition function for the F∧F theory.
format Article
author Martins, J.F.
Mikovic, A.
spellingShingle Martins, J.F.
Mikovic, A.
Four-Dimensional Spin Foam Perturbation Theory
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Martins, J.F.
Mikovic, A.
author_sort Martins, J.F.
title Four-Dimensional Spin Foam Perturbation Theory
title_short Four-Dimensional Spin Foam Perturbation Theory
title_full Four-Dimensional Spin Foam Perturbation Theory
title_fullStr Four-Dimensional Spin Foam Perturbation Theory
title_full_unstemmed Four-Dimensional Spin Foam Perturbation Theory
title_sort four-dimensional spin foam perturbation theory
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147406
citation_txt Four-Dimensional Spin Foam Perturbation Theory / J.F. Martins, A. Mikovic // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT martinsjf fourdimensionalspinfoamperturbationtheory
AT mikovica fourdimensionalspinfoamperturbationtheory
first_indexed 2023-05-20T17:27:38Z
last_indexed 2023-05-20T17:27:38Z
_version_ 1796153349148508160