On the Projective Algebra of Randers Metrics of Constant Flag Curvature

The collection of all projective vector fields on a Finsler space (M,F) is a finite-dimensional Lie algebra with respect to the usual Lie bracket, called the projective algebra denoted by p(M,F) and is the Lie algebra of the projective group P(M,F). The projective algebra p(M,F=α+β) of a Randers spa...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Rafie-Rad, M., Rezaei, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147412
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Projective Algebra of Randers Metrics of Constant Flag Curvature / M. Rafie-Rad, B. Rezaei // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The collection of all projective vector fields on a Finsler space (M,F) is a finite-dimensional Lie algebra with respect to the usual Lie bracket, called the projective algebra denoted by p(M,F) and is the Lie algebra of the projective group P(M,F). The projective algebra p(M,F=α+β) of a Randers space is characterized as a certain Lie subalgebra of the projective algebra p(M,α). Certain subgroups of the projective group P(M,F) and their invariants are studied. The projective algebra of Randers metrics of constant flag curvature is studied and it is proved that the dimension of the projective algebra of Randers metrics constant flag curvature on a compact n-manifold either equals n(n+2) or at most is n(n+1)/2.