Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces

A special class of integrable nonlinear differential equations related to A.III-type symmetric spaces and having additional reductions are analyzed via the inverse scattering method (ISM). Using the dressing method we construct two classes of soliton solutions associated with the Lax operator. Next,...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Gerdjikov, V.S., Grahovski, G.G., Mikhailov, A.V., Valchev, T.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147414
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces / V.S. Gerdjikov, G.G. Grahovski, A.V. Mikhailov, T.I. Valchev // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 51 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147414
record_format dspace
spelling irk-123456789-1474142019-02-15T01:23:52Z Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces Gerdjikov, V.S. Grahovski, G.G. Mikhailov, A.V. Valchev, T.I. A special class of integrable nonlinear differential equations related to A.III-type symmetric spaces and having additional reductions are analyzed via the inverse scattering method (ISM). Using the dressing method we construct two classes of soliton solutions associated with the Lax operator. Next, by using the Wronskian relations, the mapping between the potential and the minimal sets of scattering data is constructed. Furthermore, completeness relations for the 'squared solutions' (generalized exponentials) are derived. Next, expansions of the potential and its variation are obtained. This demonstrates that the interpretation of the inverse scattering method as a generalized Fourier transform holds true. Finally, the Hamiltonian structures of these generalized multi-component Heisenberg ferromagnetic (MHF) type integrable models on A.III-type symmetric spaces are briefly analyzed. 2011 Article Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces / V.S. Gerdjikov, G.G. Grahovski, A.V. Mikhailov, T.I. Valchev // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 51 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37K20; 35Q51; 74J30; 78A60 DOI: http://dx.doi.org/10.3842/SIGMA.2011.096 http://dspace.nbuv.gov.ua/handle/123456789/147414 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A special class of integrable nonlinear differential equations related to A.III-type symmetric spaces and having additional reductions are analyzed via the inverse scattering method (ISM). Using the dressing method we construct two classes of soliton solutions associated with the Lax operator. Next, by using the Wronskian relations, the mapping between the potential and the minimal sets of scattering data is constructed. Furthermore, completeness relations for the 'squared solutions' (generalized exponentials) are derived. Next, expansions of the potential and its variation are obtained. This demonstrates that the interpretation of the inverse scattering method as a generalized Fourier transform holds true. Finally, the Hamiltonian structures of these generalized multi-component Heisenberg ferromagnetic (MHF) type integrable models on A.III-type symmetric spaces are briefly analyzed.
format Article
author Gerdjikov, V.S.
Grahovski, G.G.
Mikhailov, A.V.
Valchev, T.I.
spellingShingle Gerdjikov, V.S.
Grahovski, G.G.
Mikhailov, A.V.
Valchev, T.I.
Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Gerdjikov, V.S.
Grahovski, G.G.
Mikhailov, A.V.
Valchev, T.I.
author_sort Gerdjikov, V.S.
title Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
title_short Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
title_full Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
title_fullStr Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
title_full_unstemmed Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
title_sort polynomial bundles and generalised fourier transforms for integrable equations on a.iii-type symmetric spaces
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147414
citation_txt Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces / V.S. Gerdjikov, G.G. Grahovski, A.V. Mikhailov, T.I. Valchev // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 51 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT gerdjikovvs polynomialbundlesandgeneralisedfouriertransformsforintegrableequationsonaiiitypesymmetricspaces
AT grahovskigg polynomialbundlesandgeneralisedfouriertransformsforintegrableequationsonaiiitypesymmetricspaces
AT mikhailovav polynomialbundlesandgeneralisedfouriertransformsforintegrableequationsonaiiitypesymmetricspaces
AT valchevti polynomialbundlesandgeneralisedfouriertransformsforintegrableequationsonaiiitypesymmetricspaces
first_indexed 2023-05-20T17:27:39Z
last_indexed 2023-05-20T17:27:39Z
_version_ 1796153349360320512