Classes of Bivariate Orthogonal Polynomials

We introduce a class of orthogonal polynomials in two variables which generalizes the disc polynomials and the 2-D Hermite polynomials. We identify certain interesting members of this class including a one variable generalization of the 2-D Hermite polynomials and a two variable extension of the Zer...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Ismail, M.E.H., Zhang, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147415
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Classes of Bivariate Orthogonal Polynomials / M.E.H. Ismail, R. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 39 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147415
record_format dspace
spelling irk-123456789-1474152019-02-15T01:25:38Z Classes of Bivariate Orthogonal Polynomials Ismail, M.E.H. Zhang, R. We introduce a class of orthogonal polynomials in two variables which generalizes the disc polynomials and the 2-D Hermite polynomials. We identify certain interesting members of this class including a one variable generalization of the 2-D Hermite polynomials and a two variable extension of the Zernike or disc polynomials. We also give q-analogues of all these extensions. In each case in addition to generating functions and three term recursions we provide raising and lowering operators and show that the polynomials are eigenfunctions of second-order partial differential or q-difference operators. 2016 Article Classes of Bivariate Orthogonal Polynomials / M.E.H. Ismail, R. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 39 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C50; 33D50; 33C45; 33D45 DOI:10.3842/SIGMA.2016.021 http://dspace.nbuv.gov.ua/handle/123456789/147415 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We introduce a class of orthogonal polynomials in two variables which generalizes the disc polynomials and the 2-D Hermite polynomials. We identify certain interesting members of this class including a one variable generalization of the 2-D Hermite polynomials and a two variable extension of the Zernike or disc polynomials. We also give q-analogues of all these extensions. In each case in addition to generating functions and three term recursions we provide raising and lowering operators and show that the polynomials are eigenfunctions of second-order partial differential or q-difference operators.
format Article
author Ismail, M.E.H.
Zhang, R.
spellingShingle Ismail, M.E.H.
Zhang, R.
Classes of Bivariate Orthogonal Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ismail, M.E.H.
Zhang, R.
author_sort Ismail, M.E.H.
title Classes of Bivariate Orthogonal Polynomials
title_short Classes of Bivariate Orthogonal Polynomials
title_full Classes of Bivariate Orthogonal Polynomials
title_fullStr Classes of Bivariate Orthogonal Polynomials
title_full_unstemmed Classes of Bivariate Orthogonal Polynomials
title_sort classes of bivariate orthogonal polynomials
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147415
citation_txt Classes of Bivariate Orthogonal Polynomials / M.E.H. Ismail, R. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 39 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ismailmeh classesofbivariateorthogonalpolynomials
AT zhangr classesofbivariateorthogonalpolynomials
first_indexed 2023-05-20T17:27:48Z
last_indexed 2023-05-20T17:27:48Z
_version_ 1796153349466226688