Weighted Tensor Products of Joyal Species, Graphs, and Charades
Motivated by the weighted Hurwitz product on sequences in an algebra, we produce a family of monoidal structures on the category of Joyal species. We suggest a family of tensor products for charades. We begin by seeing weighted derivational algebras and weighted Rota-Baxter algebras as special monoi...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147417 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Weighted Tensor Products of Joyal Species, Graphs, and Charades / R. Street // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147417 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1474172019-02-15T01:25:16Z Weighted Tensor Products of Joyal Species, Graphs, and Charades Street, R. Motivated by the weighted Hurwitz product on sequences in an algebra, we produce a family of monoidal structures on the category of Joyal species. We suggest a family of tensor products for charades. We begin by seeing weighted derivational algebras and weighted Rota-Baxter algebras as special monoids and special semigroups, respectively, for the same monoidal structure on the category of graphs in a monoidal additive category. Weighted derivations are lifted to the categorical level. 2016 Article Weighted Tensor Products of Joyal Species, Graphs, and Charades / R. Street // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ. 1815-0659 DOI:10.3842/SIGMA.2016.005 2010 Mathematics Subject Classification: 18D10; 05A15; 18A32; 18D05; 20H30; 16T30 http://dspace.nbuv.gov.ua/handle/123456789/147417 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Motivated by the weighted Hurwitz product on sequences in an algebra, we produce a family of monoidal structures on the category of Joyal species. We suggest a family of tensor products for charades. We begin by seeing weighted derivational algebras and weighted Rota-Baxter algebras as special monoids and special semigroups, respectively, for the same monoidal structure on the category of graphs in a monoidal additive category. Weighted derivations are lifted to the categorical level. |
format |
Article |
author |
Street, R. |
spellingShingle |
Street, R. Weighted Tensor Products of Joyal Species, Graphs, and Charades Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Street, R. |
author_sort |
Street, R. |
title |
Weighted Tensor Products of Joyal Species, Graphs, and Charades |
title_short |
Weighted Tensor Products of Joyal Species, Graphs, and Charades |
title_full |
Weighted Tensor Products of Joyal Species, Graphs, and Charades |
title_fullStr |
Weighted Tensor Products of Joyal Species, Graphs, and Charades |
title_full_unstemmed |
Weighted Tensor Products of Joyal Species, Graphs, and Charades |
title_sort |
weighted tensor products of joyal species, graphs, and charades |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147417 |
citation_txt |
Weighted Tensor Products of Joyal Species, Graphs, and Charades / R. Street // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT streetr weightedtensorproductsofjoyalspeciesgraphsandcharades |
first_indexed |
2023-05-20T17:27:20Z |
last_indexed |
2023-05-20T17:27:20Z |
_version_ |
1796153331362562048 |