Weighted Tensor Products of Joyal Species, Graphs, and Charades

Motivated by the weighted Hurwitz product on sequences in an algebra, we produce a family of monoidal structures on the category of Joyal species. We suggest a family of tensor products for charades. We begin by seeing weighted derivational algebras and weighted Rota-Baxter algebras as special monoi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Street, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147417
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Weighted Tensor Products of Joyal Species, Graphs, and Charades / R. Street // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147417
record_format dspace
spelling irk-123456789-1474172019-02-15T01:25:16Z Weighted Tensor Products of Joyal Species, Graphs, and Charades Street, R. Motivated by the weighted Hurwitz product on sequences in an algebra, we produce a family of monoidal structures on the category of Joyal species. We suggest a family of tensor products for charades. We begin by seeing weighted derivational algebras and weighted Rota-Baxter algebras as special monoids and special semigroups, respectively, for the same monoidal structure on the category of graphs in a monoidal additive category. Weighted derivations are lifted to the categorical level. 2016 Article Weighted Tensor Products of Joyal Species, Graphs, and Charades / R. Street // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ. 1815-0659 DOI:10.3842/SIGMA.2016.005 2010 Mathematics Subject Classification: 18D10; 05A15; 18A32; 18D05; 20H30; 16T30 http://dspace.nbuv.gov.ua/handle/123456789/147417 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Motivated by the weighted Hurwitz product on sequences in an algebra, we produce a family of monoidal structures on the category of Joyal species. We suggest a family of tensor products for charades. We begin by seeing weighted derivational algebras and weighted Rota-Baxter algebras as special monoids and special semigroups, respectively, for the same monoidal structure on the category of graphs in a monoidal additive category. Weighted derivations are lifted to the categorical level.
format Article
author Street, R.
spellingShingle Street, R.
Weighted Tensor Products of Joyal Species, Graphs, and Charades
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Street, R.
author_sort Street, R.
title Weighted Tensor Products of Joyal Species, Graphs, and Charades
title_short Weighted Tensor Products of Joyal Species, Graphs, and Charades
title_full Weighted Tensor Products of Joyal Species, Graphs, and Charades
title_fullStr Weighted Tensor Products of Joyal Species, Graphs, and Charades
title_full_unstemmed Weighted Tensor Products of Joyal Species, Graphs, and Charades
title_sort weighted tensor products of joyal species, graphs, and charades
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147417
citation_txt Weighted Tensor Products of Joyal Species, Graphs, and Charades / R. Street // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT streetr weightedtensorproductsofjoyalspeciesgraphsandcharades
first_indexed 2023-05-20T17:27:20Z
last_indexed 2023-05-20T17:27:20Z
_version_ 1796153331362562048