Initial Value Problems for Integrable Systems on a Semi-Strip

Two important cases, where boundary conditions and solutions of the well-known integrable equations on a semi-strip are uniquely determined by the initial conditions, are rigorously studied in detail. First, the case of rectangular matrix solutions of the defocusing nonlinear Schrödinger equation wi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Sakhnovich, A.L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147424
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Initial Value Problems for Integrable Systems on a Semi-Strip / A.L. Sakhnovich // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 60 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147424
record_format dspace
spelling irk-123456789-1474242019-02-15T01:24:07Z Initial Value Problems for Integrable Systems on a Semi-Strip Sakhnovich, A.L. Two important cases, where boundary conditions and solutions of the well-known integrable equations on a semi-strip are uniquely determined by the initial conditions, are rigorously studied in detail. First, the case of rectangular matrix solutions of the defocusing nonlinear Schrödinger equation with quasi-analytic boundary conditions is dealt with. (The result is new even for a scalar nonlinear Schrödinger equation.) Next, a special case of the nonlinear optics (N-wave) equation is considered. 2016 Article Initial Value Problems for Integrable Systems on a Semi-Strip / A.L. Sakhnovich // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 60 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35Q55; 35Q60; 34B20; 35A02 DOI:10.3842/SIGMA.2016.001 http://dspace.nbuv.gov.ua/handle/123456789/147424 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Two important cases, where boundary conditions and solutions of the well-known integrable equations on a semi-strip are uniquely determined by the initial conditions, are rigorously studied in detail. First, the case of rectangular matrix solutions of the defocusing nonlinear Schrödinger equation with quasi-analytic boundary conditions is dealt with. (The result is new even for a scalar nonlinear Schrödinger equation.) Next, a special case of the nonlinear optics (N-wave) equation is considered.
format Article
author Sakhnovich, A.L.
spellingShingle Sakhnovich, A.L.
Initial Value Problems for Integrable Systems on a Semi-Strip
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Sakhnovich, A.L.
author_sort Sakhnovich, A.L.
title Initial Value Problems for Integrable Systems on a Semi-Strip
title_short Initial Value Problems for Integrable Systems on a Semi-Strip
title_full Initial Value Problems for Integrable Systems on a Semi-Strip
title_fullStr Initial Value Problems for Integrable Systems on a Semi-Strip
title_full_unstemmed Initial Value Problems for Integrable Systems on a Semi-Strip
title_sort initial value problems for integrable systems on a semi-strip
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147424
citation_txt Initial Value Problems for Integrable Systems on a Semi-Strip / A.L. Sakhnovich // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 60 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT sakhnovichal initialvalueproblemsforintegrablesystemsonasemistrip
first_indexed 2023-05-20T17:26:53Z
last_indexed 2023-05-20T17:26:53Z
_version_ 1796153325320667136