Non-Associative Geometry of Quantum Tori
We describe how to obtain the imprimitivity bimodules of the noncommutative torus from a ''principal bundle'' construction, where the total space is a quasi-associative deformation of a 3-dimensional Heisenberg manifold.
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147425 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Non-Associative Geometry of Quantum Tori / F. D'Andrea, D. Franco // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We describe how to obtain the imprimitivity bimodules of the noncommutative torus from a ''principal bundle'' construction, where the total space is a quasi-associative deformation of a 3-dimensional Heisenberg manifold. |
---|