Non-Associative Geometry of Quantum Tori
We describe how to obtain the imprimitivity bimodules of the noncommutative torus from a ''principal bundle'' construction, where the total space is a quasi-associative deformation of a 3-dimensional Heisenberg manifold.
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147425 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Non-Associative Geometry of Quantum Tori / F. D'Andrea, D. Franco // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147425 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1474252019-02-15T01:23:36Z Non-Associative Geometry of Quantum Tori D'Andrea, F. Franco, D. We describe how to obtain the imprimitivity bimodules of the noncommutative torus from a ''principal bundle'' construction, where the total space is a quasi-associative deformation of a 3-dimensional Heisenberg manifold. 2016 Article Non-Associative Geometry of Quantum Tori / F. D'Andrea, D. Franco // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58B34; 46L87; 53D55 DOI:10.3842/SIGMA.2016.015 http://dspace.nbuv.gov.ua/handle/123456789/147425 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We describe how to obtain the imprimitivity bimodules of the noncommutative torus from a ''principal bundle'' construction, where the total space is a quasi-associative deformation of a 3-dimensional Heisenberg manifold. |
format |
Article |
author |
D'Andrea, F. Franco, D. |
spellingShingle |
D'Andrea, F. Franco, D. Non-Associative Geometry of Quantum Tori Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
D'Andrea, F. Franco, D. |
author_sort |
D'Andrea, F. |
title |
Non-Associative Geometry of Quantum Tori |
title_short |
Non-Associative Geometry of Quantum Tori |
title_full |
Non-Associative Geometry of Quantum Tori |
title_fullStr |
Non-Associative Geometry of Quantum Tori |
title_full_unstemmed |
Non-Associative Geometry of Quantum Tori |
title_sort |
non-associative geometry of quantum tori |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147425 |
citation_txt |
Non-Associative Geometry of Quantum Tori / F. D'Andrea, D. Franco // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT dandreaf nonassociativegeometryofquantumtori AT francod nonassociativegeometryofquantumtori |
first_indexed |
2023-05-20T17:27:40Z |
last_indexed |
2023-05-20T17:27:40Z |
_version_ |
1796153341578838016 |