Non-Associative Geometry of Quantum Tori

We describe how to obtain the imprimitivity bimodules of the noncommutative torus from a ''principal bundle'' construction, where the total space is a quasi-associative deformation of a 3-dimensional Heisenberg manifold.

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: D'Andrea, F., Franco, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147425
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Non-Associative Geometry of Quantum Tori / F. D'Andrea, D. Franco // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147425
record_format dspace
spelling irk-123456789-1474252019-02-15T01:23:36Z Non-Associative Geometry of Quantum Tori D'Andrea, F. Franco, D. We describe how to obtain the imprimitivity bimodules of the noncommutative torus from a ''principal bundle'' construction, where the total space is a quasi-associative deformation of a 3-dimensional Heisenberg manifold. 2016 Article Non-Associative Geometry of Quantum Tori / F. D'Andrea, D. Franco // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58B34; 46L87; 53D55 DOI:10.3842/SIGMA.2016.015 http://dspace.nbuv.gov.ua/handle/123456789/147425 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We describe how to obtain the imprimitivity bimodules of the noncommutative torus from a ''principal bundle'' construction, where the total space is a quasi-associative deformation of a 3-dimensional Heisenberg manifold.
format Article
author D'Andrea, F.
Franco, D.
spellingShingle D'Andrea, F.
Franco, D.
Non-Associative Geometry of Quantum Tori
Symmetry, Integrability and Geometry: Methods and Applications
author_facet D'Andrea, F.
Franco, D.
author_sort D'Andrea, F.
title Non-Associative Geometry of Quantum Tori
title_short Non-Associative Geometry of Quantum Tori
title_full Non-Associative Geometry of Quantum Tori
title_fullStr Non-Associative Geometry of Quantum Tori
title_full_unstemmed Non-Associative Geometry of Quantum Tori
title_sort non-associative geometry of quantum tori
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147425
citation_txt Non-Associative Geometry of Quantum Tori / F. D'Andrea, D. Franco // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT dandreaf nonassociativegeometryofquantumtori
AT francod nonassociativegeometryofquantumtori
first_indexed 2023-05-20T17:27:40Z
last_indexed 2023-05-20T17:27:40Z
_version_ 1796153341578838016