Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures
A matrix-valued measure Θ reduces to measures of smaller size if there exists a constant invertible matrix M such that MΘM∗ is block diagonal. Equivalently, the real vector space A of all matrices T such that TΘ(X)=Θ(X)T∗ for any Borel set X is non-trivial. If the subspace Ah of self-adjoints elemen...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | Koelink, E., Román, P. |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147427 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures / E. Koelink, P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineСхожі ресурси
-
Orthogonality Measure on the Torus for Vector-Valued Jack Polynomials
за авторством: Dunkl, C.F.
Опубліковано: (2016) -
Strongly orthogonal and uniformly orthogonal many-placed operations
за авторством: Belyavskaya, G., та інші
Опубліковано: (2006) -
Properties of Matrix Orthogonal Polynomials via their Riemann-Hilbert Characterization
за авторством: Grünbaum, F.A., та інші
Опубліковано: (2011) -
Classes of Bivariate Orthogonal Polynomials
за авторством: Ismail, M.E.H., та інші
Опубліковано: (2016) -
Central Limit Theorem for Linear Eigenvalue Statistics of Orthogonally Invariant Matrix Models
за авторством: Shcherbina, M.
Опубліковано: (2008)