Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three

For G a finite subgroup of SL(3,C) acting freely on C³∖{0} a crepant resolution of the Calabi-Yau orbifold C³/G always exists and has the geometry of an ALE non-compact manifold. We show that the tautological bundles on these crepant resolutions admit rigid Hermitian-Yang-Mills connections. For this...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Degeratu, A., Walpuski, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147430
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three / A. Degeratu, T. Walpuski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147430
record_format dspace
spelling irk-123456789-1474302019-02-15T01:24:25Z Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three Degeratu, A. Walpuski, T. For G a finite subgroup of SL(3,C) acting freely on C³∖{0} a crepant resolution of the Calabi-Yau orbifold C³/G always exists and has the geometry of an ALE non-compact manifold. We show that the tautological bundles on these crepant resolutions admit rigid Hermitian-Yang-Mills connections. For this we use analytical information extracted from the derived category McKay correspondence of Bridgeland, King, and Reid [J. Amer. Math. Soc. 14 (2001), 535-554]. As a consequence we rederive multiplicative cohomological identities on the crepant resolution using the Atiyah-Patodi-Singer index theorem. These results are dimension three analogues of Kronheimer and Nakajima's results [Math. Ann. 288 (1990), 263-307] in dimension two. 2016 Article Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three / A. Degeratu, T. Walpuski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C07; 14F05; 58J20 DOI:10.3842/SIGMA.2016.017 http://dspace.nbuv.gov.ua/handle/123456789/147430 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For G a finite subgroup of SL(3,C) acting freely on C³∖{0} a crepant resolution of the Calabi-Yau orbifold C³/G always exists and has the geometry of an ALE non-compact manifold. We show that the tautological bundles on these crepant resolutions admit rigid Hermitian-Yang-Mills connections. For this we use analytical information extracted from the derived category McKay correspondence of Bridgeland, King, and Reid [J. Amer. Math. Soc. 14 (2001), 535-554]. As a consequence we rederive multiplicative cohomological identities on the crepant resolution using the Atiyah-Patodi-Singer index theorem. These results are dimension three analogues of Kronheimer and Nakajima's results [Math. Ann. 288 (1990), 263-307] in dimension two.
format Article
author Degeratu, A.
Walpuski, T.
spellingShingle Degeratu, A.
Walpuski, T.
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Degeratu, A.
Walpuski, T.
author_sort Degeratu, A.
title Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three
title_short Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three
title_full Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three
title_fullStr Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three
title_full_unstemmed Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three
title_sort rigid hym connections on tautological bundles over ale crepant resolutions in dimension three
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147430
citation_txt Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three / A. Degeratu, T. Walpuski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT degeratua rigidhymconnectionsontautologicalbundlesoveralecrepantresolutionsindimensionthree
AT walpuskit rigidhymconnectionsontautologicalbundlesoveralecrepantresolutionsindimensionthree
first_indexed 2023-05-20T17:27:40Z
last_indexed 2023-05-20T17:27:40Z
_version_ 1796153342105223168