2025-02-23T19:36:31-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147430%22&qt=morelikethis&rows=5
2025-02-23T19:36:31-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147430%22&qt=morelikethis&rows=5
2025-02-23T19:36:31-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T19:36:31-05:00 DEBUG: Deserialized SOLR response
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three
For G a finite subgroup of SL(3,C) acting freely on C³∖{0} a crepant resolution of the Calabi-Yau orbifold C³/G always exists and has the geometry of an ALE non-compact manifold. We show that the tautological bundles on these crepant resolutions admit rigid Hermitian-Yang-Mills connections. For this...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2016
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147430 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-147430 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1474302019-02-15T01:24:25Z Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three Degeratu, A. Walpuski, T. For G a finite subgroup of SL(3,C) acting freely on C³∖{0} a crepant resolution of the Calabi-Yau orbifold C³/G always exists and has the geometry of an ALE non-compact manifold. We show that the tautological bundles on these crepant resolutions admit rigid Hermitian-Yang-Mills connections. For this we use analytical information extracted from the derived category McKay correspondence of Bridgeland, King, and Reid [J. Amer. Math. Soc. 14 (2001), 535-554]. As a consequence we rederive multiplicative cohomological identities on the crepant resolution using the Atiyah-Patodi-Singer index theorem. These results are dimension three analogues of Kronheimer and Nakajima's results [Math. Ann. 288 (1990), 263-307] in dimension two. 2016 Article Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three / A. Degeratu, T. Walpuski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C07; 14F05; 58J20 DOI:10.3842/SIGMA.2016.017 http://dspace.nbuv.gov.ua/handle/123456789/147430 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For G a finite subgroup of SL(3,C) acting freely on C³∖{0} a crepant resolution of the Calabi-Yau orbifold C³/G always exists and has the geometry of an ALE non-compact manifold. We show that the tautological bundles on these crepant resolutions admit rigid Hermitian-Yang-Mills connections. For this we use analytical information extracted from the derived category McKay correspondence of Bridgeland, King, and Reid [J. Amer. Math. Soc. 14 (2001), 535-554]. As a consequence we rederive multiplicative cohomological identities on the crepant resolution using the Atiyah-Patodi-Singer index theorem. These results are dimension three analogues of Kronheimer and Nakajima's results [Math. Ann. 288 (1990), 263-307] in dimension two. |
format |
Article |
author |
Degeratu, A. Walpuski, T. |
spellingShingle |
Degeratu, A. Walpuski, T. Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Degeratu, A. Walpuski, T. |
author_sort |
Degeratu, A. |
title |
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three |
title_short |
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three |
title_full |
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three |
title_fullStr |
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three |
title_full_unstemmed |
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three |
title_sort |
rigid hym connections on tautological bundles over ale crepant resolutions in dimension three |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147430 |
citation_txt |
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three / A. Degeratu, T. Walpuski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT degeratua rigidhymconnectionsontautologicalbundlesoveralecrepantresolutionsindimensionthree AT walpuskit rigidhymconnectionsontautologicalbundlesoveralecrepantresolutionsindimensionthree |
first_indexed |
2023-05-20T17:27:40Z |
last_indexed |
2023-05-20T17:27:40Z |
_version_ |
1796153342105223168 |