Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three
For G a finite subgroup of SL(3,C) acting freely on C³∖{0} a crepant resolution of the Calabi-Yau orbifold C³/G always exists and has the geometry of an ALE non-compact manifold. We show that the tautological bundles on these crepant resolutions admit rigid Hermitian-Yang-Mills connections. For this...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147430 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three / A. Degeratu, T. Walpuski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147430 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1474302019-02-15T01:24:25Z Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three Degeratu, A. Walpuski, T. For G a finite subgroup of SL(3,C) acting freely on C³∖{0} a crepant resolution of the Calabi-Yau orbifold C³/G always exists and has the geometry of an ALE non-compact manifold. We show that the tautological bundles on these crepant resolutions admit rigid Hermitian-Yang-Mills connections. For this we use analytical information extracted from the derived category McKay correspondence of Bridgeland, King, and Reid [J. Amer. Math. Soc. 14 (2001), 535-554]. As a consequence we rederive multiplicative cohomological identities on the crepant resolution using the Atiyah-Patodi-Singer index theorem. These results are dimension three analogues of Kronheimer and Nakajima's results [Math. Ann. 288 (1990), 263-307] in dimension two. 2016 Article Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three / A. Degeratu, T. Walpuski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C07; 14F05; 58J20 DOI:10.3842/SIGMA.2016.017 http://dspace.nbuv.gov.ua/handle/123456789/147430 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For G a finite subgroup of SL(3,C) acting freely on C³∖{0} a crepant resolution of the Calabi-Yau orbifold C³/G always exists and has the geometry of an ALE non-compact manifold. We show that the tautological bundles on these crepant resolutions admit rigid Hermitian-Yang-Mills connections. For this we use analytical information extracted from the derived category McKay correspondence of Bridgeland, King, and Reid [J. Amer. Math. Soc. 14 (2001), 535-554]. As a consequence we rederive multiplicative cohomological identities on the crepant resolution using the Atiyah-Patodi-Singer index theorem. These results are dimension three analogues of Kronheimer and Nakajima's results [Math. Ann. 288 (1990), 263-307] in dimension two. |
format |
Article |
author |
Degeratu, A. Walpuski, T. |
spellingShingle |
Degeratu, A. Walpuski, T. Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Degeratu, A. Walpuski, T. |
author_sort |
Degeratu, A. |
title |
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three |
title_short |
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three |
title_full |
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three |
title_fullStr |
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three |
title_full_unstemmed |
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three |
title_sort |
rigid hym connections on tautological bundles over ale crepant resolutions in dimension three |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147430 |
citation_txt |
Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three / A. Degeratu, T. Walpuski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT degeratua rigidhymconnectionsontautologicalbundlesoveralecrepantresolutionsindimensionthree AT walpuskit rigidhymconnectionsontautologicalbundlesoveralecrepantresolutionsindimensionthree |
first_indexed |
2023-05-20T17:27:40Z |
last_indexed |
2023-05-20T17:27:40Z |
_version_ |
1796153342105223168 |