A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries

We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of M-cotangent lift of a vector field on a manifold Q in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091], [Fassò F., Ramos A., Sansonett...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Balseiro, P., Sansonetto, N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147431
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries / P. Balseiro, N. Sansonetto // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 35 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of M-cotangent lift of a vector field on a manifold Q in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091], [Fassò F., Ramos A., Sansonetto N., Regul. Chaotic Dyn. 12 (2007), 579-588], and [Fassò F., Giacobbe A., Sansonetto N., Rep. Math. Phys. 62 (2008), 345-367]. Second, we study gauge symmetries and gauge momenta, in the cases in which there are the symmetries that satisfy the so-called vertical symmetry condition. Under such condition we can predict the number of linearly independent first integrals (that are gauge momenta). We illustrate the theory with two examples.