The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces

The third, fifth and sixth Painlevé equations are studied by means of the weighted projective spaces CP³(p,q,r,s) with suitable weights (p,q,r,s) determined by the Newton polyhedrons of the equations. Singular normal forms of the equations, symplectic atlases of the spaces of initial conditions, Ric...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Chiba, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147432
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147432
record_format dspace
spelling irk-123456789-1474322019-02-15T01:24:23Z The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces Chiba, H. The third, fifth and sixth Painlevé equations are studied by means of the weighted projective spaces CP³(p,q,r,s) with suitable weights (p,q,r,s) determined by the Newton polyhedrons of the equations. Singular normal forms of the equations, symplectic atlases of the spaces of initial conditions, Riccati solutions and Boutroux's coordinates are systematically studied in a unified way with the aid of the orbifold structure of CP³(p,q,r,s) and dynamical systems theory. 2016 Article The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 9 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M35; 34M45; 34M55 DOI:10.3842/SIGMA.2016.019 http://dspace.nbuv.gov.ua/handle/123456789/147432 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The third, fifth and sixth Painlevé equations are studied by means of the weighted projective spaces CP³(p,q,r,s) with suitable weights (p,q,r,s) determined by the Newton polyhedrons of the equations. Singular normal forms of the equations, symplectic atlases of the spaces of initial conditions, Riccati solutions and Boutroux's coordinates are systematically studied in a unified way with the aid of the orbifold structure of CP³(p,q,r,s) and dynamical systems theory.
format Article
author Chiba, H.
spellingShingle Chiba, H.
The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Chiba, H.
author_sort Chiba, H.
title The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces
title_short The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces
title_full The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces
title_fullStr The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces
title_full_unstemmed The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces
title_sort third, fifth and sixth painlevé equations on weighted projective spaces
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147432
citation_txt The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 9 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT chibah thethirdfifthandsixthpainleveequationsonweightedprojectivespaces
AT chibah thirdfifthandsixthpainleveequationsonweightedprojectivespaces
first_indexed 2023-05-20T17:27:40Z
last_indexed 2023-05-20T17:27:40Z
_version_ 1796153342315986944