Symmetries of the Continuous and Discrete Krichever-Novikov Equation

A symmetry classification is performed for a class of differential-difference equations depending on 9 parameters. A 6-parameter subclass of these equations is an integrable discretization of the Krichever-Novikov equation. The dimension n of the Lie point symmetry algebra satisfies 1≤n≤5. The highe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Levi, D., Winternitz, P., Yamilov, R.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147657
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Symmetries of the Continuous and Discrete Krichever-Novikov Equation / D. Levi, P. Winternitz, R.I. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147657
record_format dspace
spelling irk-123456789-1476572019-02-16T01:25:40Z Symmetries of the Continuous and Discrete Krichever-Novikov Equation Levi, D. Winternitz, P. Yamilov, R.I. A symmetry classification is performed for a class of differential-difference equations depending on 9 parameters. A 6-parameter subclass of these equations is an integrable discretization of the Krichever-Novikov equation. The dimension n of the Lie point symmetry algebra satisfies 1≤n≤5. The highest dimensions, namely n=5 and n=4 occur only in the integrable cases. 2011 Article Symmetries of the Continuous and Discrete Krichever-Novikov Equation / D. Levi, P. Winternitz, R.I. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35B06; 35K25; 37K10; 39A14 http://dspace.nbuv.gov.ua/handle/123456789/147657 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A symmetry classification is performed for a class of differential-difference equations depending on 9 parameters. A 6-parameter subclass of these equations is an integrable discretization of the Krichever-Novikov equation. The dimension n of the Lie point symmetry algebra satisfies 1≤n≤5. The highest dimensions, namely n=5 and n=4 occur only in the integrable cases.
format Article
author Levi, D.
Winternitz, P.
Yamilov, R.I.
spellingShingle Levi, D.
Winternitz, P.
Yamilov, R.I.
Symmetries of the Continuous and Discrete Krichever-Novikov Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Levi, D.
Winternitz, P.
Yamilov, R.I.
author_sort Levi, D.
title Symmetries of the Continuous and Discrete Krichever-Novikov Equation
title_short Symmetries of the Continuous and Discrete Krichever-Novikov Equation
title_full Symmetries of the Continuous and Discrete Krichever-Novikov Equation
title_fullStr Symmetries of the Continuous and Discrete Krichever-Novikov Equation
title_full_unstemmed Symmetries of the Continuous and Discrete Krichever-Novikov Equation
title_sort symmetries of the continuous and discrete krichever-novikov equation
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147657
citation_txt Symmetries of the Continuous and Discrete Krichever-Novikov Equation / D. Levi, P. Winternitz, R.I. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 31 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT levid symmetriesofthecontinuousanddiscretekrichevernovikovequation
AT winternitzp symmetriesofthecontinuousanddiscretekrichevernovikovequation
AT yamilovri symmetriesofthecontinuousanddiscretekrichevernovikovequation
first_indexed 2023-05-20T17:28:05Z
last_indexed 2023-05-20T17:28:05Z
_version_ 1796153361837326336