Symmetries of the Continuous and Discrete Krichever-Novikov Equation
A symmetry classification is performed for a class of differential-difference equations depending on 9 parameters. A 6-parameter subclass of these equations is an integrable discretization of the Krichever-Novikov equation. The dimension n of the Lie point symmetry algebra satisfies 1≤n≤5. The highe...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147657 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Symmetries of the Continuous and Discrete Krichever-Novikov Equation / D. Levi, P. Winternitz, R.I. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 31 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147657 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1476572019-02-16T01:25:40Z Symmetries of the Continuous and Discrete Krichever-Novikov Equation Levi, D. Winternitz, P. Yamilov, R.I. A symmetry classification is performed for a class of differential-difference equations depending on 9 parameters. A 6-parameter subclass of these equations is an integrable discretization of the Krichever-Novikov equation. The dimension n of the Lie point symmetry algebra satisfies 1≤n≤5. The highest dimensions, namely n=5 and n=4 occur only in the integrable cases. 2011 Article Symmetries of the Continuous and Discrete Krichever-Novikov Equation / D. Levi, P. Winternitz, R.I. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35B06; 35K25; 37K10; 39A14 http://dspace.nbuv.gov.ua/handle/123456789/147657 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A symmetry classification is performed for a class of differential-difference equations depending on 9 parameters. A 6-parameter subclass of these equations is an integrable discretization of the Krichever-Novikov equation. The dimension n of the Lie point symmetry algebra satisfies 1≤n≤5. The highest dimensions, namely n=5 and n=4 occur only in the integrable cases. |
format |
Article |
author |
Levi, D. Winternitz, P. Yamilov, R.I. |
spellingShingle |
Levi, D. Winternitz, P. Yamilov, R.I. Symmetries of the Continuous and Discrete Krichever-Novikov Equation Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Levi, D. Winternitz, P. Yamilov, R.I. |
author_sort |
Levi, D. |
title |
Symmetries of the Continuous and Discrete Krichever-Novikov Equation |
title_short |
Symmetries of the Continuous and Discrete Krichever-Novikov Equation |
title_full |
Symmetries of the Continuous and Discrete Krichever-Novikov Equation |
title_fullStr |
Symmetries of the Continuous and Discrete Krichever-Novikov Equation |
title_full_unstemmed |
Symmetries of the Continuous and Discrete Krichever-Novikov Equation |
title_sort |
symmetries of the continuous and discrete krichever-novikov equation |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147657 |
citation_txt |
Symmetries of the Continuous and Discrete Krichever-Novikov Equation / D. Levi, P. Winternitz, R.I. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 31 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT levid symmetriesofthecontinuousanddiscretekrichevernovikovequation AT winternitzp symmetriesofthecontinuousanddiscretekrichevernovikovequation AT yamilovri symmetriesofthecontinuousanddiscretekrichevernovikovequation |
first_indexed |
2023-05-20T17:28:05Z |
last_indexed |
2023-05-20T17:28:05Z |
_version_ |
1796153361837326336 |