Classical and Quantum Dynamics on Orbifolds
We present two versions of the Egorov theorem for orbifolds. The first one is a straightforward extension of the classical theorem for smooth manifolds. The second one considers an orbifold as a singular manifold, the orbit space of a Lie group action, and deals with the corresponding objects in non...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147660 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Classical and Quantum Dynamics on Orbifolds / Y.A. Kordyukov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147660 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1476602019-02-16T01:25:38Z Classical and Quantum Dynamics on Orbifolds Kordyukov, Y.A. We present two versions of the Egorov theorem for orbifolds. The first one is a straightforward extension of the classical theorem for smooth manifolds. The second one considers an orbifold as a singular manifold, the orbit space of a Lie group action, and deals with the corresponding objects in noncommutative geometry. 2011 Article Classical and Quantum Dynamics on Orbifolds / Y.A. Kordyukov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58J40; 58J42; 58B34 http://dspace.nbuv.gov.ua/handle/123456789/147660 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We present two versions of the Egorov theorem for orbifolds. The first one is a straightforward extension of the classical theorem for smooth manifolds. The second one considers an orbifold as a singular manifold, the orbit space of a Lie group action, and deals with the corresponding objects in noncommutative geometry. |
format |
Article |
author |
Kordyukov, Y.A. |
spellingShingle |
Kordyukov, Y.A. Classical and Quantum Dynamics on Orbifolds Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Kordyukov, Y.A. |
author_sort |
Kordyukov, Y.A. |
title |
Classical and Quantum Dynamics on Orbifolds |
title_short |
Classical and Quantum Dynamics on Orbifolds |
title_full |
Classical and Quantum Dynamics on Orbifolds |
title_fullStr |
Classical and Quantum Dynamics on Orbifolds |
title_full_unstemmed |
Classical and Quantum Dynamics on Orbifolds |
title_sort |
classical and quantum dynamics on orbifolds |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147660 |
citation_txt |
Classical and Quantum Dynamics on Orbifolds / Y.A. Kordyukov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT kordyukovya classicalandquantumdynamicsonorbifolds |
first_indexed |
2023-05-20T17:28:06Z |
last_indexed |
2023-05-20T17:28:06Z |
_version_ |
1796153367991418880 |