2025-02-23T18:23:13-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147719%22&qt=morelikethis&rows=5
2025-02-23T18:23:13-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147719%22&qt=morelikethis&rows=5
2025-02-23T18:23:13-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T18:23:13-05:00 DEBUG: Deserialized SOLR response

Modular Form Representation for Periods of Hyperelliptic Integrals

To every hyperelliptic curve one can assign the periods of the integrals over the holomorphic and the meromorphic differentials. By comparing two representations of the so-called projective connection it is possible to reexpress the latter periods by the first. This leads to expressions including on...

Full description

Saved in:
Bibliographic Details
Main Author: Eilers, K.
Format: Article
Language:English
Published: Інститут математики НАН України 2016
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/147719
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-147719
record_format dspace
spelling irk-123456789-1477192019-02-16T01:24:22Z Modular Form Representation for Periods of Hyperelliptic Integrals Eilers, K. To every hyperelliptic curve one can assign the periods of the integrals over the holomorphic and the meromorphic differentials. By comparing two representations of the so-called projective connection it is possible to reexpress the latter periods by the first. This leads to expressions including only the curve's parameters λj and modular forms. By a change of basis of the meromorphic differentials one can further simplify this expression. We discuss the advantages of these explicitly given bases, which we call Baker and Klein basis, respectively. 2016 Article Modular Form Representation for Periods of Hyperelliptic Integrals / K. Eilers // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14H42; 30F30 DOI:10.3842/SIGMA.2016.060 http://dspace.nbuv.gov.ua/handle/123456789/147719 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description To every hyperelliptic curve one can assign the periods of the integrals over the holomorphic and the meromorphic differentials. By comparing two representations of the so-called projective connection it is possible to reexpress the latter periods by the first. This leads to expressions including only the curve's parameters λj and modular forms. By a change of basis of the meromorphic differentials one can further simplify this expression. We discuss the advantages of these explicitly given bases, which we call Baker and Klein basis, respectively.
format Article
author Eilers, K.
spellingShingle Eilers, K.
Modular Form Representation for Periods of Hyperelliptic Integrals
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Eilers, K.
author_sort Eilers, K.
title Modular Form Representation for Periods of Hyperelliptic Integrals
title_short Modular Form Representation for Periods of Hyperelliptic Integrals
title_full Modular Form Representation for Periods of Hyperelliptic Integrals
title_fullStr Modular Form Representation for Periods of Hyperelliptic Integrals
title_full_unstemmed Modular Form Representation for Periods of Hyperelliptic Integrals
title_sort modular form representation for periods of hyperelliptic integrals
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147719
citation_txt Modular Form Representation for Periods of Hyperelliptic Integrals / K. Eilers // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT eilersk modularformrepresentationforperiodsofhyperellipticintegrals
first_indexed 2023-05-20T17:28:08Z
last_indexed 2023-05-20T17:28:08Z
_version_ 1796153370556235776