Nijenhuis Integrability for Killing Tensors

The fundamental tool in the classification of orthogonal coordinate systems in which the Hamilton-Jacobi and other prominent equations can be solved by a separation of variables are second order Killing tensors which satisfy the Nijenhuis integrability conditions. The latter are a system of three no...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Schöbel, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147721
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Nijenhuis Integrability for Killing Tensors / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147721
record_format dspace
spelling irk-123456789-1477212019-02-16T01:24:06Z Nijenhuis Integrability for Killing Tensors Schöbel, K. The fundamental tool in the classification of orthogonal coordinate systems in which the Hamilton-Jacobi and other prominent equations can be solved by a separation of variables are second order Killing tensors which satisfy the Nijenhuis integrability conditions. The latter are a system of three non-linear partial differential equations. We give a simple and completely algebraic proof that for a Killing tensor the third and most complicated of these equations is redundant. This considerably simplifies the classification of orthogonal separation coordinates on arbitrary (pseudo-)Riemannian manifolds. 2016 Article Nijenhuis Integrability for Killing Tensors / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H06; 53A60; 53B20 DOI:10.3842/SIGMA.2016.024 http://dspace.nbuv.gov.ua/handle/123456789/147721 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The fundamental tool in the classification of orthogonal coordinate systems in which the Hamilton-Jacobi and other prominent equations can be solved by a separation of variables are second order Killing tensors which satisfy the Nijenhuis integrability conditions. The latter are a system of three non-linear partial differential equations. We give a simple and completely algebraic proof that for a Killing tensor the third and most complicated of these equations is redundant. This considerably simplifies the classification of orthogonal separation coordinates on arbitrary (pseudo-)Riemannian manifolds.
format Article
author Schöbel, K.
spellingShingle Schöbel, K.
Nijenhuis Integrability for Killing Tensors
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Schöbel, K.
author_sort Schöbel, K.
title Nijenhuis Integrability for Killing Tensors
title_short Nijenhuis Integrability for Killing Tensors
title_full Nijenhuis Integrability for Killing Tensors
title_fullStr Nijenhuis Integrability for Killing Tensors
title_full_unstemmed Nijenhuis Integrability for Killing Tensors
title_sort nijenhuis integrability for killing tensors
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147721
citation_txt Nijenhuis Integrability for Killing Tensors / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT schobelk nijenhuisintegrabilityforkillingtensors
first_indexed 2023-05-20T17:28:08Z
last_indexed 2023-05-20T17:28:08Z
_version_ 1796153362687721472