Loops in SU(2), Riemann Surfaces, and Factorization, I

In previous work we showed that a loop g:S¹→SU(2) has a triangular factorization if and only if the loop g has a root subgroup factorization. In this paper we present generalizations in which the unit disk and its double, the sphere, are replaced by a based compact Riemann surface with boundary, and...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Basor, E., Pickrell, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147722
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Loops in SU(2), Riemann Surfaces, and Factorization, I / E. Basor, D. Pickrell // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147722
record_format dspace
spelling irk-123456789-1477222019-02-16T01:24:21Z Loops in SU(2), Riemann Surfaces, and Factorization, I Basor, E. Pickrell, D. In previous work we showed that a loop g:S¹→SU(2) has a triangular factorization if and only if the loop g has a root subgroup factorization. In this paper we present generalizations in which the unit disk and its double, the sphere, are replaced by a based compact Riemann surface with boundary, and its double. One ingredient is the theory of generalized Fourier-Laurent expansions developed by Krichever and Novikov. We show that a SU(2) valued multiloop having an analogue of a root subgroup factorization satisfies the condition that the multiloop, viewed as a transition function, defines a semistable holomorphic SL(2,C) bundle. Additionally, for such a multiloop, there is a corresponding factorization for determinants associated to the spin Toeplitz operators defined by the multiloop. 2016 Article Loops in SU(2), Riemann Surfaces, and Factorization, I / E. Basor, D. Pickrell // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 22E67; 47A68; 47B35 DOI:10.3842/SIGMA.2016.025 http://dspace.nbuv.gov.ua/handle/123456789/147722 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In previous work we showed that a loop g:S¹→SU(2) has a triangular factorization if and only if the loop g has a root subgroup factorization. In this paper we present generalizations in which the unit disk and its double, the sphere, are replaced by a based compact Riemann surface with boundary, and its double. One ingredient is the theory of generalized Fourier-Laurent expansions developed by Krichever and Novikov. We show that a SU(2) valued multiloop having an analogue of a root subgroup factorization satisfies the condition that the multiloop, viewed as a transition function, defines a semistable holomorphic SL(2,C) bundle. Additionally, for such a multiloop, there is a corresponding factorization for determinants associated to the spin Toeplitz operators defined by the multiloop.
format Article
author Basor, E.
Pickrell, D.
spellingShingle Basor, E.
Pickrell, D.
Loops in SU(2), Riemann Surfaces, and Factorization, I
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Basor, E.
Pickrell, D.
author_sort Basor, E.
title Loops in SU(2), Riemann Surfaces, and Factorization, I
title_short Loops in SU(2), Riemann Surfaces, and Factorization, I
title_full Loops in SU(2), Riemann Surfaces, and Factorization, I
title_fullStr Loops in SU(2), Riemann Surfaces, and Factorization, I
title_full_unstemmed Loops in SU(2), Riemann Surfaces, and Factorization, I
title_sort loops in su(2), riemann surfaces, and factorization, i
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147722
citation_txt Loops in SU(2), Riemann Surfaces, and Factorization, I / E. Basor, D. Pickrell // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT basore loopsinsu2riemannsurfacesandfactorizationi
AT pickrelld loopsinsu2riemannsurfacesandfactorizationi
first_indexed 2023-05-20T17:28:08Z
last_indexed 2023-05-20T17:28:08Z
_version_ 1796153362793627648