Basic Forms and Orbit Spaces: a Diffeological Approach
If a Lie group acts on a manifold freely and properly, pulling back by the quotient map gives an isomorphism between the differential forms on the quotient manifold and the basic differential forms upstairs. We show that this result remains true for actions that are not necessarily free nor proper,...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147723 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Basic Forms and Orbit Spaces: a Diffeological Approach / Y. Karshon, J. Watts // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 30 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147723 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1477232019-02-16T01:24:54Z Basic Forms and Orbit Spaces: a Diffeological Approach Karshon, Y. Watts, J. If a Lie group acts on a manifold freely and properly, pulling back by the quotient map gives an isomorphism between the differential forms on the quotient manifold and the basic differential forms upstairs. We show that this result remains true for actions that are not necessarily free nor proper, as long as the identity component acts properly, where on the quotient space we take differential forms in the diffeological sense. 2016 Article Basic Forms and Orbit Spaces: a Diffeological Approach / Y. Karshon, J. Watts // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 30 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58D19; 57R99 DOI:10.3842/SIGMA.2016.026 http://dspace.nbuv.gov.ua/handle/123456789/147723 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
If a Lie group acts on a manifold freely and properly, pulling back by the quotient map gives an isomorphism between the differential forms on the quotient manifold and the basic differential forms upstairs. We show that this result remains true for actions that are not necessarily free nor proper, as long as the identity component acts properly, where on the quotient space we take differential forms in the diffeological sense. |
format |
Article |
author |
Karshon, Y. Watts, J. |
spellingShingle |
Karshon, Y. Watts, J. Basic Forms and Orbit Spaces: a Diffeological Approach Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Karshon, Y. Watts, J. |
author_sort |
Karshon, Y. |
title |
Basic Forms and Orbit Spaces: a Diffeological Approach |
title_short |
Basic Forms and Orbit Spaces: a Diffeological Approach |
title_full |
Basic Forms and Orbit Spaces: a Diffeological Approach |
title_fullStr |
Basic Forms and Orbit Spaces: a Diffeological Approach |
title_full_unstemmed |
Basic Forms and Orbit Spaces: a Diffeological Approach |
title_sort |
basic forms and orbit spaces: a diffeological approach |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147723 |
citation_txt |
Basic Forms and Orbit Spaces: a Diffeological Approach / Y. Karshon, J. Watts // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 30 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT karshony basicformsandorbitspacesadiffeologicalapproach AT wattsj basicformsandorbitspacesadiffeologicalapproach |
first_indexed |
2023-05-20T17:28:08Z |
last_indexed |
2023-05-20T17:28:08Z |
_version_ |
1796153362898485248 |