Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147726 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs / R.C. Avohou // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147726 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1477262019-02-16T01:25:07Z Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs Avohou, R.C. Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension D≥3 a modified Euler characteristic with D−2 parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank D weakly-colored stranded graphs. 2016 Article Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs / R.C. Avohou // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 05C10; 57M15 DOI:10.3842/SIGMA.2016.030 http://dspace.nbuv.gov.ua/handle/123456789/147726 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension D≥3 a modified Euler characteristic with D−2 parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank D weakly-colored stranded graphs. |
format |
Article |
author |
Avohou, R.C. |
spellingShingle |
Avohou, R.C. Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Avohou, R.C. |
author_sort |
Avohou, R.C. |
title |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs |
title_short |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs |
title_full |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs |
title_fullStr |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs |
title_full_unstemmed |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs |
title_sort |
polynomial invariants for arbitrary rank d weakly-colored stranded graphs |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147726 |
citation_txt |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs / R.C. Avohou // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT avohourc polynomialinvariantsforarbitraryrankdweaklycoloredstrandedgraphs |
first_indexed |
2023-05-20T17:28:09Z |
last_indexed |
2023-05-20T17:28:09Z |
_version_ |
1796153363215155200 |