Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs

Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Avohou, R.C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147726
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs / R.C. Avohou // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147726
record_format dspace
spelling irk-123456789-1477262019-02-16T01:25:07Z Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs Avohou, R.C. Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension D≥3 a modified Euler characteristic with D−2 parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank D weakly-colored stranded graphs. 2016 Article Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs / R.C. Avohou // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 05C10; 57M15 DOI:10.3842/SIGMA.2016.030 http://dspace.nbuv.gov.ua/handle/123456789/147726 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension D≥3 a modified Euler characteristic with D−2 parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank D weakly-colored stranded graphs.
format Article
author Avohou, R.C.
spellingShingle Avohou, R.C.
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Avohou, R.C.
author_sort Avohou, R.C.
title Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
title_short Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
title_full Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
title_fullStr Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
title_full_unstemmed Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
title_sort polynomial invariants for arbitrary rank d weakly-colored stranded graphs
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147726
citation_txt Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs / R.C. Avohou // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT avohourc polynomialinvariantsforarbitraryrankdweaklycoloredstrandedgraphs
first_indexed 2023-05-20T17:28:09Z
last_indexed 2023-05-20T17:28:09Z
_version_ 1796153363215155200