Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics
This paper is a natural companion of [Alekseevsky D.V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497-524, arXiv:1003.5177], generalising its perspectives and results to the context of third-order (2D) Monge-Ampère equations, by using the so-called ''...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147730 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics / G. Manno, G. Moreno // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147730 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1477302019-02-16T01:25:06Z Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics Manno, G. Moreno, G. This paper is a natural companion of [Alekseevsky D.V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497-524, arXiv:1003.5177], generalising its perspectives and results to the context of third-order (2D) Monge-Ampère equations, by using the so-called ''meta-symplectic structure'' associated with the 8D prolongation M⁽¹⁾ of a 5D contact manifold M. We write down a geometric definition of a third-order Monge-Ampère equation in terms of a (class of) differential two-form on M⁽¹⁾. In particular, the equations corresponding to decomposable forms admit a simple description in terms of certain three-dimensional distributions, which are made from the characteristics of the original equations. We conclude the paper with a study of the intermediate integrals of these special Monge-Ampère equations, herewith called of Goursat type. 2016 Article Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics / G. Manno, G. Moreno // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D10; 35A30; 58A30; 14M15 DOI:10.3842/SIGMA.2016.032 http://dspace.nbuv.gov.ua/handle/123456789/147730 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
This paper is a natural companion of [Alekseevsky D.V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497-524, arXiv:1003.5177], generalising its perspectives and results to the context of third-order (2D) Monge-Ampère equations, by using the so-called ''meta-symplectic structure'' associated with the 8D prolongation M⁽¹⁾ of a 5D contact manifold M. We write down a geometric definition of a third-order Monge-Ampère equation in terms of a (class of) differential two-form on M⁽¹⁾. In particular, the equations corresponding to decomposable forms admit a simple description in terms of certain three-dimensional distributions, which are made from the characteristics of the original equations. We conclude the paper with a study of the intermediate integrals of these special Monge-Ampère equations, herewith called of Goursat type. |
format |
Article |
author |
Manno, G. Moreno, G. |
spellingShingle |
Manno, G. Moreno, G. Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Manno, G. Moreno, G. |
author_sort |
Manno, G. |
title |
Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics |
title_short |
Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics |
title_full |
Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics |
title_fullStr |
Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics |
title_full_unstemmed |
Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics |
title_sort |
meta-symplectic geometry of 3rd order monge-ampère equations and their characteristics |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147730 |
citation_txt |
Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics / G. Manno, G. Moreno // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT mannog metasymplecticgeometryof3rdordermongeampereequationsandtheircharacteristics AT morenog metasymplecticgeometryof3rdordermongeampereequationsandtheircharacteristics |
first_indexed |
2023-05-20T17:28:09Z |
last_indexed |
2023-05-20T17:28:09Z |
_version_ |
1796153363531825152 |