Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics

This paper is a natural companion of [Alekseevsky D.V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497-524, arXiv:1003.5177], generalising its perspectives and results to the context of third-order (2D) Monge-Ampère equations, by using the so-called ''...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Manno, G., Moreno, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147730
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics / G. Manno, G. Moreno // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147730
record_format dspace
spelling irk-123456789-1477302019-02-16T01:25:06Z Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics Manno, G. Moreno, G. This paper is a natural companion of [Alekseevsky D.V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497-524, arXiv:1003.5177], generalising its perspectives and results to the context of third-order (2D) Monge-Ampère equations, by using the so-called ''meta-symplectic structure'' associated with the 8D prolongation M⁽¹⁾ of a 5D contact manifold M. We write down a geometric definition of a third-order Monge-Ampère equation in terms of a (class of) differential two-form on M⁽¹⁾. In particular, the equations corresponding to decomposable forms admit a simple description in terms of certain three-dimensional distributions, which are made from the characteristics of the original equations. We conclude the paper with a study of the intermediate integrals of these special Monge-Ampère equations, herewith called of Goursat type. 2016 Article Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics / G. Manno, G. Moreno // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D10; 35A30; 58A30; 14M15 DOI:10.3842/SIGMA.2016.032 http://dspace.nbuv.gov.ua/handle/123456789/147730 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper is a natural companion of [Alekseevsky D.V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497-524, arXiv:1003.5177], generalising its perspectives and results to the context of third-order (2D) Monge-Ampère equations, by using the so-called ''meta-symplectic structure'' associated with the 8D prolongation M⁽¹⁾ of a 5D contact manifold M. We write down a geometric definition of a third-order Monge-Ampère equation in terms of a (class of) differential two-form on M⁽¹⁾. In particular, the equations corresponding to decomposable forms admit a simple description in terms of certain three-dimensional distributions, which are made from the characteristics of the original equations. We conclude the paper with a study of the intermediate integrals of these special Monge-Ampère equations, herewith called of Goursat type.
format Article
author Manno, G.
Moreno, G.
spellingShingle Manno, G.
Moreno, G.
Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Manno, G.
Moreno, G.
author_sort Manno, G.
title Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics
title_short Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics
title_full Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics
title_fullStr Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics
title_full_unstemmed Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics
title_sort meta-symplectic geometry of 3rd order monge-ampère equations and their characteristics
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147730
citation_txt Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics / G. Manno, G. Moreno // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT mannog metasymplecticgeometryof3rdordermongeampereequationsandtheircharacteristics
AT morenog metasymplecticgeometryof3rdordermongeampereequationsandtheircharacteristics
first_indexed 2023-05-20T17:28:09Z
last_indexed 2023-05-20T17:28:09Z
_version_ 1796153363531825152